CURVATURE MEASURES, ISOPERIMETRIC TYPE INEQUALITIES
AND FULLY NONLINEAR PDES

PENGFEI GUAN

The material in the notes is compiled from the lectures given in the CIME Summer
School in Cetraro, 2012. It treats some nonlinear elliptic and parabolic partial differential
equations arising from geometric problems of hypersurfaces in R"*!. A curvature type
of elliptic equation is used to solve the problem of prescribing curvature measures, which
is a Minkowski type problem. An inverse mean curvature type of parabolic equation is
employed for the proof of isoperimetric type inequalities for quermassintegrals of k-convex
starshaped domains. Both types of equations are fully nonlinear, they belong to the
category of general geometric fully nonlinear PDE.

The emphasis of the notes is the a priori estimates, which is the key in the theory of
fully nonlinear PDE. These estimates are intend to be self-contained here, with minimal
assumptions on basic knowledge in PDE and geometry, namely the standard maximum
principles for linear elliptic and parabolic equations, the elementary formulas of Gauss,
Codazzi and Weingarten for hypersurfaces in R"*!, and the curvature commutator identi-
ties. Two theorems we would use without proof for higher regularity are: the Evans-Krylov
Theorem [11, 32] for uniformly fully nonlinear elliptic equations and the Krylov Theorem
[32] for uniformly parabolic fully nonlinear PDE, since the proofs of these deep results
would take considerable space.

The topics dealt in this notes are special samples of geometric nonlinear PDE. It is our
hope they can serve as an introduction to the general theory of geometric analysis.

The notes are organized as follows. The curvature measures are introduced through the
Steiner formula in differential geometric setting in section 1, where the Steiner formula and
the Minkowski identity are proved. As the geometric objects and the associated differential
equations are involved the elementary symmetric functions, some important properties of
these functions are collected in section 2 with proofs, except the theory of hyperbolic
polynomials of Garding which is put in the Appendix. Section 3 deals with the problem
of prescribing curvature measures. A k-curvature fully nonlinear elliptic equation is set
up there together with the a priori estimates of the solutions of the equation. Section 4 is
devoted to the proof of the isoperimetric inequalities for quermassintegrals of k-convex star
shaped domains, via parabolic approach. Again, the main part is the a priori estimates for
the solutions of the corresponding parabolic equation. The literature comments appear at
the end of the notes.

Research of the first author was supported in part by an NSERC Discovery Grant.
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1. THE STEINER FORMULA AND CURVATURE MEASURES

Suppose € is a domain in R"*!, for each x € R™*! denote p(€2, z) to be the set of the
nearest points in Q to x. Given any Borel set 8 € B(R"*1), Vs > 0, consider

Ay, B) = {z e R"™|0 < d(Q,z) < s and p(Q,z) € B}

which is the set of all points # € R™"! for which the distance d({,z) < s and for which
the nearest point p(€2, x) belongs to 5. If 9 is smooth and 3 is open, for s > 0 small,
one may write
As(,8) ={X+tv(X) | XepfnNM0<t<s,}
where v(X) is the outer normal of M at X.
We assume the boundary of 2, M = 95, is C? (or smoother). Let

K(X) = (k1(X), - kn(X))

be the principal curvatures of X € M. To calculate the volume of A4(£2, ), pick any local
orthonormal frame of M, so that the second fundamental form (W;;(X)) of M at X is
diagonal. As (X + tv(X)); = (1 4+ tWy;)X;, and v(X) is orthogonal to X;, the volume
element at X + tv(X) is simply

n n

dV = ([ + tWii))dpardt = 0i(k(X))t dpardt,

=1 =0
where 0;(k) is the i-th elementary symmetric function of x (see Definition (2.1)), and
where dp, is the volume element with respect to the induced metric g of M in Rt
Therefore,

s n i n sit1
Va8 = | /B Ly R =3 /ﬂ s
Set
(1.1) Cm () = opm(k)dprs, m=0,1,--- n.
We have proved the Steiner formula,
n,ooogntl-m
(1.2) V(As(2,8)) = Y ————Cn(,8),

szn—i—l—m

for B € B(R"*1) and s > 0.

In the context of classical convex geometry, the coefficients Co(€2,-),- -+ ,Cpn(,-) in (1.2)
are called curvature measures of the convex body 2. Formula (1.1) indicates that C,,(€2,-)
is well defined if 9 is C? without convexity assumption. In general, C,,(2) is a signed
measure. The positivity of C,,(Q2) for 0 < m < k is related to the notion of k-convexity
(Definition 3.1).

The global quantities

(13) Vn,m(Q) = Cn7k‘/ O'm(lf)d,uM7 m = O, 1, ceem,
M
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ok (1, ,1)
ok—1(1,,1)°
is convex. Again, we note that these quantities are well defined for general C? domain
without convexity condition.

It is clear that the curvature measures capture the geometry of M.

where C,, ) = are called the quermassintegrals of {2 in convex geometry, if €2

(1) What are the relations between quermassintegrals?
(2) How much information can we extract from the curvature measures?

These are the main questions we want to deal with in this notes. The first question
has satisfactory answer when (Q is convex, which corresponds to the classical Alexandrov-
Fenchel inequalities. Generalization of these inequalities to non-convex domains has gained
much interest recently, but remains largely unsettled. We will focus on a class of non-
convex star-shaped domains, where a clean result can be established. The second question
can be answered in terms of the Minkowski type problem, the problem of prescribing
curvature measures. It turns out there is an affirmative answer if we restrict ourselves to
the class of non-convex star-shaped domains.

There is a different expression for V;,_,,(Q2) involving the support function u(X) =
(X,v(X)). The Minkowski identity states that Vk > 1,

(1.4) /M uok(k)dpn = Ch i /M ok—1(K)dunr,

By the Divergent theorem,

1
Vit1(Q) = —— dpp.
+1( ) n+1 MU 123
From (1.4), we may define
(15) Viws)-+(8) = [ wordiar,
for k = 0,--- ,n. V,41(Q) is multiple of the volume of 2 by a dimensional constant,

Vo (£2) is a multiple of the surface area of 92 by another dimensional constant. In convex
geometry, u is called the support function of €.

The Minkowski identity (1.4) can be verified using the fact that oy has divergent free
structure (Lemma 2.1). Again, pick a local orthonormal frame on M, let h = (W;;) be
the second fundamental from and let g~ 'h = (h;) be the Weingarten tensor. We compute

X 2
(7| 2| )z‘j = XZ‘X]‘ + Xij = (5,‘]‘ - <X,I/(X)>Wij = (5,‘]‘ — uI/VU
Contracting with O']ij = g‘}’b’; (g~ 'h) and integrating over M
j

. X|2 . .
O'U 7| i':/ O'Zjdi‘—UO'ZJWZ“ .
f o= [ ety —uafwi)

a,ijéij = (n —k+ 1)0]{,1, Uszij = koy,
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and by (2.3), we get

0:(n—k+1)/

[ i —k/ wor(g=h).

M
This is exactly the identity (1.4).

The Minkowski addition of two sets 1, Qs C R™t! is defined as
N+ ={z=z+ylreQ,yec D}

The Minkowski addition is one of the basic operation in convex geometry. For general
domain 2, when 0 < s small, one may define

Qs ={2z=z+y|lr € Qye By},
where By is the ball centered at the origin with radius s.
Qs ={X+twv(X) |[XeQ0<t<s}
If M = 0% is smooth, the boundary 9€0; = M, is also smooth and can be written as
Ms;={X+sv(X) |XeM.}

Moreover, the normal of My at X5 = X +sv(X) is the same as v(X) for each X € M. The
support function of Q; is us(X?*) = u(X) + s. For any local orthonormal frame ey, --- , e,
on M such that h = (W;;) is diagonal at the point, one may calculate the induced metric
gs on M?

n

gs = Z(l + hi)’e; @ e,
i=1
and the area element of M*

duns, = det(I + sg~ ' h)dpun.
By the Minkowski identity, the volume of {25 can be computed as

V() = - i i /M us det(I 4 sg~ h)dpus
T n i 1 /M zz:(usiai(glh) + s )oi(g h)dpnr
- n ~1¥— 1 g 7;——:118#1 /M Ui(g_lh)d'uM " n‘li‘l M i
n+1

= D ant"TV(Q),
i=0
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2. SOME PROPERTIES OF ELEMENTARY SYMMETRIC FUNCTIONS

The elementary symmetric functions appear naturally in the geometric quantities in the
previous section. In order to carry on analysis, we need to understand properties of the
elementary symmetric functions.

For 1 <k <mn,and A = (A1,..., A\n) € R™, the k-th elementary symmetric function is
defined as

(2.1) Z Aig e Ai s

where the sum is taken over all strlctly increasing sequences i1, ..., i of the indices from
the set {1,...,n}. The definition can be extended to symmetric matrices. Denote \(W) =
(M(W),...; A\ (W) to be the eigenvalues of the symmetric matrix W, set

o (W) = o (AM(W)).
It is convenient to set
oo(W)=1, op(W)=0, fork>n.

It follows directly from the definition that, for any n x n symmetric matrix W, and
vVt € R,

(2.2) on(I +tW) = det(I +tW) = Zaz

Conversely, (2.2) can also be used to define oy, (W), Vk: =0,---,n

An important property of o is the divergent free structure. Suppose M is a general
Riemannian manifold of dimension n, W is a symmetric tensor on M. We call W is
Codazzi if DW = 0. This property is equivalent to say that, for any local orthonormal
frame (eq,--- ,e,) on M, write W = (w;;), then w;;; = Ve,w;; is symmetric with respect
to 4, j,l. Some classical examples are

(1) second fundamental form A of any hypersurface in in space form N(c) with constant
sectional curvature ¢, this follows from the Codazzi equation;

(2) W =V’v + cv, Yo € C3(N(c)).
Throughout the rest of the notes, we will use Einstein summation convention, unless it

18 otherwise indicated.

Below is the statement of divergent free structure of oy.

Lemma 2.1. Suppose ei,--- e, is a local orthonormal frame on M, W = (wj;) is a
Codazzi tensor on M, then for each t,

(2.3) zn: Oy = 0.

= 8ww

Proof. We first verify (2.3) for k = n. Denote C? to be the cofactor of W, i.e.,
Ooy,,
Owy

=C",  CMuy = det(W)d).
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Differentiate above identity in e,, direction and contract with CJ™,
CIMCilwy; + CMwyj  CI™ = 8% (det(W))mCI™.
If det(W) # 0 at the point, we get
Cim = CPIC™ g 1y — CHCI™ w1 = CPIC™ Wy 1 — CCI™ w5 = 0.

If det (W) = 0 at the point, we may approximate W by Codazzi tensor W = W +tg where

g is the metric tensor on M such that det(W) # 0 for ¢ small. (2.3) is verified for the case
=n.
Observe that, for t € R,
on(W) =Y t"on m(W).

Apply (2.3) for the case k = n,

> STy~ o
m=0 J

8wij
Since it is true for all ¢t € R, we must have VYm,

S (@2 ), = o,

8’(1]1'3‘

J

The following gives explicit algebraic formulas for o (W).

Proposition 2.2. If W = (W;;) is an n X n symmetric matriz, let F(W) = o (W) for
1 <k <n. Then the following relations hold.

1 < o
op(W) = T E G(11, s T3 J15 ooy J)Wings =+ Wi
’ i1t =1

Jise-nsJk=1

OF
Fob = (W)
OMWap

n

1 . . . .
= (k—l ] Z 5(05711)"')Zk—l;ﬁajlv"'7jk—1)Wi1j1 '.'mk—ljk—l

U1yl —1=1
Jiseesk—1=1

Fijﬂ‘s — O*F
T AW, oW,
1 n

B (kf—2)' Z 5(iﬂrvil7"'7ik—2;j75aj17---ajk—Q)Wi1j1 "'W/’ikfgjkfga

(W)

Uyl —2=1
JiseesJk—2=1
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where the Kronecker symbol 6(I;J) for indices I = (i1,...,im) and J = (ji, ..., jm) S
defined as

1, if I is an even permutation of J;
0(I;J) =< =1, ifI is an odd permutation of J;
0, otherwise.

D 0 (W) WignWanj = o1(W)ow(W) = (k + 1)ogra (W)

1,7,
Proof. The first identity follows from (2.2) by equalized the coefficient in front of t*. The
second and third identities follow from the first identity. Notice that all the identity are
invariant under orthornormal transformation. In particular, we may assume W is diagonal
in the last identity. For A € R", for any fixed i € {1,--- ,n}, denote (\|i) € R"™ with i-th
component of A replaced by 0. Differentiation of (2.1) yields

dop(A) )
(2.4) ) o (A,
Again it can read off from (2.1),
(2.5) ok(A) = ok(Al2) + Aiog—1(Ali).

Thus,

Niok(A|7) = Xi(op(N) = Niop—1(A]i) = Niog(A) = Mop_1(\]4).
Using homogeneity of 011, the last identity in the proposition follows from the above by
summing up over 4. ]

Definition 2.3. For 1 <k <mn, let I'y, is a cone in R" determined by
Fk:{)\ERnZ 0‘1()\) >0,...,O‘k()\) >0}.
A n x n symmetric matric W is called belong to T' is \(W) € T'.

Let Wl ... W™ be n x n symmetric matrices, define o,(W1, ..., WW") to be the co-
efficient in front of the factor ¢y ---t, of the polynomial det(t;W?' + --- + ¢t,W"). It is
called the mixed determinant of W1, ... W™ In general, for 1 < k < n, we define
or(W1, ..., Wk) = (z)an(Wl, o, WE I, ... T), where the identity matrix I appears (n— k)
times. op (W1, ..., Wk) is called the complete polarization of the symmetric function oy.

The following Garding inequality plays important role in geometric PDE.

Lemma 2.4. T, is a conver cone. VW* € I'y,i =1,..., k,
(26) U%(le W27 W3> T Wk) > Uk(le Wla W37 Tty Wk)ak(WQa W27 W37 ) Wk)v
equality hold if and only if W' and W? are proportional. And
1 1
(2.7) opr(Wt, ... ,W’f) > o} (Wt wh. o (W’f’ e ,W’f)’
the equality holds if and only if W, W7 are pairwise proportional.
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Lemma 2.4 is a special case of Garding’s theory of hyperbolic polynomials, which can
be found in Appendix. The convexity of Iy follows from Proposition 5.2, (2.6) and (2.7)
follow from Corollary 5.4 and Proposition 5.6 in Appendix.

Inequality (2.6) yields the Newton-MacLaurin inequality.

Lemma 2.5. For W €Ty,

(2.8) (n—k+1)(k+ Dop_1(W)ogs1 (W) < k(n — k)op(W),
and
k1l
(2.9) op1(W) < enpoy™ (W),
kbl
where ¢y = U’“%(Dkk (I). The equality holds if and only if W = ¢l for some ¢ > 0.

Proof. If o;,11(W) <0, as W € I'y, (2.8) is trivial. We may assume o1 (W) > 0, so
W € T'xi1. Replace k by k+1in (2.6), and set W! =1, W2 = ... = Wkttt = W e Ty,
(2.8) follows from (2.6). The similar argument yields (2.9) using (2.7). O

We remark that the Newton-MacLaurin inequality is valid for general symmetric matrix
W (e.g., [29]).

The following lemma establish connection of o, with the ellipticity of Hessian and
curvature equations.

Lemma 2.6. Let F' = oy, then the matrix (%) is positive definite for W € I'y,. where
Wij are the entries of W. If W € Ty, then (W|i) € I'y_1,Vk =0,1,--- ,n,i=1,2,--- ,n,
where (W i) is the matriz with i-th column and i-th row deleted. Furthermore, if W € Ty,
and ||W|| =
such that

ij w?j < R for some R > 0, then there is ¢, > 0 depending only on n, k,

o (W) OF

(2.10) LI < () <
RO+ capolt(n)) W

Proof. Fix W € Iy, for any positive definite matrix A = (a;;), by Lemma 2.4,

0<0k(W,...7W,A):Zi

This implies the positivity of (((??,V—F”) By Proposition 2.2 and the positivity of (3?/5_), for
each [ <k, W € T'y, and for any i € {1,--- ,n},

¥
Ooy

0
< oW

= o1 (Wli).

This yields (W|i) € T'x_1.
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To show (2.10), we only need to control g—f\i = 0k—1(A|7), where \;,;i =1,--- ,n are the
eigenvalues of W. By the assumption, and (2.9)

s<op(W) = or(Ai)+ Niok—1(A|7)

1
< Uk_1()\”i)(/\i + Cn,ko-g:i <)‘|Z))
1

< R+ cppoi=y (I))or—1(Ali).
this gives the lower bound in (2.10). The upper bound for oj_1 (A7) is trivial. O

We now switch to the quotient of elementary symmetric functions. Some of the concave
properties of them will be used in crucial way in the a priori estimates in the rest of the
sections.

1
Lemma 2.7. For 0 <1 <k <mn, let F' = (£)*1, then (;2£) is positive definite for

8wij
W = (wi;) €Ty. Ifl=k—1,if W ey and |W| =,/ i’jw?j < R for some R > 0,
then there is c, 1, > 0 depending only on n, k, such that
F F
(2.11) (WL 1< (8a —
R(1 + ¢, pof 1 (1)) Wi

)< (n—k+1)I.

Moreover, the function F is concave in I'y_q.

Proof. To simplify notation, define

o
Qm = - .
Om—1
For any | < k,
0 k—1
k
(212) % T Qs
et
As Qyj > 0for j=1,--- k—1, for the first statement in lemma, we only need to check

the positivity of (%?FW)) for W = (w;;) € I'y and for m =1{,--- ,k — 1. By product
ij
rule,

OQur (W) om(W)PZ52 ) — oy (W) 2% 00

é)wij 0'2 (W)

m

By Proposition 2.2, the positivity of (82i52/)

) is invariant under orthonormal transforma-

tions, we only need to check the positivity of 8@237;;1@ for A € Ty, i € {1,--- ,n} and
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m=1,---,k—1. Again,

Om A 8am+%()\) — o A 8om<A)
(2.13) aQrg;j(A) _ (N) O T +1(N) N
_ om(N)am(Ali) — oms1(A)om—1(A[i)
o (A)
_ omA))om(Ali) — omi1(Al)om-1(Al7)
o (A)
n a2 (A7)
= i m)m+ 1) oA
> 0,

the Newton-MacLaurine inequality (2.8) is used in the last step as (\|i) € T'y_1 for each
i. In particular, if m =k — 1 and W € I'y, for each i,

0Qr(N) 0Qxr(N)
oN; = Z oN;

or_1(\|4)
< A S
- ZZ: o—1(A)
= n—k+1.

0

This provides the upper bound in (2.11). By (2.9)

or(W) }
— < _1of (W).
Uk—l(W) > Cnk 1Uk( )
Foreachi=1,--- ,n,
or-1(AD) _ or(A) or-1(AlD)
or-1(A)  ok_1(N) RN
Now the lower bound in (2.11) follows from (2.13) and (2.10).
Notice that if fi > 0 and fo > 0 are two concave function, for any 1 > a > 0,
f=rmn 21_6“ is also concave. Hence, we only need to check the concavity of ”Zl—ﬂ:l in Typpa.

In fact, we show 0:77:1 in I',,.
m = 0 is trivial. For m = 1, there is a useful explicit formula. VA, A + £ € T'y, we have
algebraic identity

(Oi(&o1(N) = Xio1(€)))?
o1(Nar(A+&or(A—=¢)

2Q2(A) = Q2(A+§) — QA - §) =

This yields,
Q2 (X i(&ioi(N) — )\i01(€)))2‘

0% {0V

This gives the concavity of g—f on I'y.
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For m > 1, we use induction. For A € 'y, for each ¢ € {1,--- ,n} fixed, by (2.5) and
Corollary 2.6,
M+ Om() = T2t
’ " om(Al7) ‘
Apply the last identity in Proposition 2.2,
2 0m-1(Al7)
(m+1DQmN) = > (= A=T=755)

i

B 2 Um—l(/\‘i)
= 2 (=X am()\\z’)+)\z’ffm—1(/\|i)))

)

y
- Zi:(/\i YT Qm(Mi)).

For any £ € R™ with |{] = 1, set A+ = XA+ €. Take ¢ > 0 small enough such that
At € Iy, using the above identity for A, A+, one compute

(m+1)(2Qm+1(A) — Qmi1(Ae+) — Qmr1(Ac-))

B (N + €&)? (N —€&)?

B (2))2 )
Qm et 1) + Qm( A1) + 2X;

(2)) 2)?
+Z Qm e*‘ + Qm()‘e* ’Z) + 2)\1‘ a )\i + Qm()\h))
_ Z ((Ni 4 €6)Qm(Ae-) — (Ni — €6)Qm(Aet))?
(@m(Act) + Ai + €€) (@A) + Ai — €6)(Qm(Ac+) + Qm(Ac—) + €Ai)

B 9 E+‘ ) + Qm()‘e* ’Z) — 2Qm()‘)
QZA (Qm! E+\ )+ Qum(Ae-10) + 2X0) (A + Qm (i)

Thus,
_PQmi o 2Qmii () = Qi (Aer) = Qi (M)
82§ e—0 62
. m(Aet 1) + Qm(Ac= i) — 2Qm(N)

> lim—2) M\

= A (O 6+| )+ Q1) +22) i + Qu (A7)

_ Ly A?(%?zm)wz)

T D@ + A

As (MA|i) € T'y—1, by induction hypothesis, 62?5” (A7) <0. O

The following lemma will play key role for the problem of prescribing curvature mea-
sures.
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Lemma 2.8. Let a = k—il, if W € T'y, is a symmetric tensor on a Riemannian manifold
M. For any local orthornormal frame {ei,--- ,e,}, denote Wijs = Ve, Wij. Then

210 (o)W Wi < | T O P o) (]
Ok 01 Ok 01
Proof. By the concavity of () (W), we have
01
(2.15) 0 o 7\ T Wi s W,
. > 2 (lZE | )
= 8m]amm (<01> ) ij,s VVim,s
Denote a = ﬁ Direct computations yield,
H? oe \ &
0> ——— | — | WisWins
- OWi0Wiy, (01> Jatims
(2.16) _ a<ok>a [(am’lm 4 (@=1)(e) ()"
o1 Ok oL

B 204(0;;);2(101)% + (Oc—&-l)(U;);j (Ul)lm] Wi sWim,s
1

Equivalently,

(o) Wiy Wins [(a—n(ak)“(ak)lm _ 20(08)" (o)™

Ok o7 oKO1

(a41)(o1)¥ (01)'™ L
(2.17) + o? :|sz,sI/Vlm,s

(1) (ans] [(a C ) (g 4 1)l

Ok

IN
|
| —
Q
kol
|
Q
-,

Note in Lemma 2.8, one may replace o by any positive function F' with the property
that (Uﬂl)o‘ is concave for some « > 0. The following is a corollary of Lemma 2.8.

Corollary 2.9. If % = (ow)s o for some r,

Ok

. k
(2.18) (o1) MW, sWij.s < max {2T(ak)s — 1r20k, 0}.

3. PRESCRIBING CURVATURE MEASURES

Assume © C R™! is a bounded star-shaped domain with respect to the origin. We may
parametrize M = 082 over S by positive radial function p Due to the parametrization,
the prescribe curvature measure problem for this class of domains can be reduced to a
curvature type nonlinear partial differential equation of p on S™. We want to establish the
existence theorems of prescribing general (n—k)-th curvature measure problem with & > 0
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on bounded C? star-shaped domains. When k = n, the prescribing curvature measure Cy
is the Alexandrov problem corresponding to a Monge-Ampeére type equation on S”, which
won’t be treated here.

In order to make the problem in proper PDE setting, we need to impose some geometric
condition on 9f).

Definition 3.1. A domain Q is called k-convex if its principal curvature vector k(z) =
(K1, ,kn) € 'y at every point x € ON.

For each star-shaped domain 2 with M = 02, express M as a radial graph of S”,

RM St — M
z — p(z)z.

From (1.1)the (n — k)-th curvature measure on each Borel set 5 in S" can be defined as

Ck(M,ﬂ) = /R &) O’k(/i)d,ug.

The precise statement of the problem for prescribing (n — k)-th curvature measure is:
given a positive function f € C%(S™), find a closed hypersurface M as a radial graph over
S™, such that C,,_y(M, ) = fﬁ fdu for every Borel set B in S™, where du is the standard

volume element on S™.

For the C? graph M on S", denote the induced metric to be g and the density function

is v/det g. Then

(3.1) Coi(M, ) = /R B

ordpg = [ oxy/det gdS".
B

We now write down the local expressions of the induced metric, support function wu,
second fundamental form and Weingarten curvatures in terms of positive function p and its
derivatives Vp, V2p. Let {e1,--- ,e,} be a local orthonormal frame on S”, and denote €ij
the standard spherical metric with respect to this frame (which is the identity matrix). We
use V as the gradient operator with respect to standard metric on S”. To simplify notation,
for any function v on S", we will write V., v = v; as covariant derivative with respect to
e; on S™ in this subsection, if there is no confusion. From the radial parametrization
X(2) = pla)z,

Xi = piz+ pei,
Xij pij& + piej + pjei + plei); = pizx + piej + pje; — peijx.
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The following identities can be read off from the above.

y— _pr=Vp
-
! VP2Vl
3.9 9ij = P~0ij + pipj
(3:2) 0 L(§ — _Pibi
g p? P2 +[Vpl?
hij = (P + IVpl2) 1 (=pViVip + 2pip; + pei;)

W= e T ) PVEVie + 2pupi + peny)
From (3.2),

detg = p" '/ p? + [Vpl2.

The prescribing (n — k)-th curvature measure problem can be deduced to the following
curvature equation on S™:

f
P 0P+ [Vl

where f > 01is the given function on S™. A solution of (3.3) is called admissible if k(X ) € T'y,
at each point X € M. We note that any positive C? function p on S™ satisfying equation
(3.3) is automatically an admissible solution. Since the principal curvatures at a maximum
point of p are positive, solution is admissible at this point. As I'y and S™ are connected,
and k(X)) varies continuously, the fact of ox(k(X)) > 0 implies solution is admissible at
each point of M.

The following is the statement of solvability of the problem of the prescribing curvature
measures.

(3.3) Ok(K1, Kn) = Uk(h;") =

Theorem 3.2. Letn > 2 and 1 < k < n — 1. Suppose f € C*(S") and f > 0. Then
there exists a unique k-convex star-shaped hypersurface M € C3, Yo € (0,1) such that it
satisfies (3.3). Moreover, there is a constant C' depending only on k,n, ||f|lc1.1, |1/ f]lco,
and o such that,

(3.4) lpllgse < €.

The rest of the section is devoted to the proof of Theorem 3.2. The main task will be the
a priori estimates for solutions of equation (3.3). We will use the radial parametrization
on S” for the estimates up to C'. Then we will work directly on M for the curvature
estimates, which is equivalent to C? estimates.

It will be convenient to introduce a new variable v = log p. Set

w = /14 |V~|2
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The unit outward normal and support function can be expressed as v = %(1, Y1y s —Yn)

2 .
and u = < respectively. Moreover,

9= €(0; +v7),
gzj — 6_27(67"7 — @)
w

hij = S(=vij + 77 + €i5)

: N _
hy = (e = ) (—yks + W + exg)-
Notice that the Weingarten tensor in (3.5) is in general not symmetric with respect local
lo orthonormal frames (eq,---,e,) on S, even though it is symmetric with respect to
local orthonormal frames on M. We observe that the symmetric matrix (e’ — %) has
an obvious square root S. That is,

(3.6) §=(8u) = (e~ goh gk (U =5

(3.5)

S can be used to symmetrize the Weingarten tensor. The eigenvalues of (h;) is the same

as eigenvalues of %B , with B defined as

B = :(bij) = S(=m + N¥m + €im)S
S (v v YV 2w WimYm
3.7 (i B B , ‘
(3.7) (=g + 05 + o) IEEmE )
Curvature equation (3.3) can be rewritten as
e(n_k)'y

As B is a function in vQ'y,vv only, it is independent of v. Set

(3.9) F(V*7,V7) = —ok(B).

iRy _ 0
Denote o/ (B) = abL;;’ we compute

L F g
(3.10) (FI) = () = S(o}/(B)S.
i
Since S in (3.6) is positive definite, we have (88712) > 0.

3.1. Uniqueness and C'-estimates.

Lemma 3.3. Let 1 < k <n. Let L denote the linearized operator at a solution p of (3.3),
if v satisfies L(v) =0 on S™, then v =0 on S". Moreover, suppose p, p are two solutions
of equation (3.3) and X\(p;) € T'y, fori=1,2. Then p1 = pa.

Proof. (3.8) can be put in the form of

e(nfk)'y ~

e F(V', V) =~ f.

(3.11) =
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The linearized operator at -y is

e(nfk)'y ~. .
L(U) = wk—1 FUUij + Zblvl - (n - k)fU,
l

for some function b;,l = 1,--- ,n. The first statement in lemma follows immediately from
the maximum principle.
Suppose 7 = logp and 4 = logp are two solutions of equation (3.8), denote &w =

\/1+4 V4|2 and B to be the corresponding tensor B in (3.7) with ~ replaced by 4. For
t € [0,1], set

Y=ty + (1 —1t)y, w=1/14+|V4!2, B'=tB+(1-1t)B.

Set v =~ — 7, as Bt € T},

(n—k)y (n—k)¥

€ (& ~

! (B) - k-1 (B)
1 d e(nfk)'yt

= [ S F(BY)at
It

1 e(n—k)y 1 o(n—kp* . _
_ / (n— k(S F(BY))dt + / (L FU(BY))dt(bi; — biy) + mod(Vo).
0 w; 0wy

Write S = (S;-), and observe that S only involves 67,627 (and so is S), by the Mean
Value Theorem,

B - B =—-S(V°v)S + mod(Vv),

and

k—1 k—1
Wy 0 Wy

1 e(n—k)'yt 5 1 e(n—k)wt B o
0= /O (n — k)( F(BY)dt)v — / ( F'I(BY))dt) 25 v + mod(Vv).

Since (fol(em:_c)lwt FU(BY))dt)S*S$P7) > 0, fol (n — k)(e(nx?t F(BY)dt > 0, v satisfies the
Wt

Wy
following elliptic equation,

a (2)vi(x) + 0¥ (x)vg(x) + c(x)v(z) =0, VreS",

with ¢(x) < 0 for all x € S”. The maximum principle yields v = 0. That is p = p. O

It is useful to write down some differential identities for general C'! symmetric function
F. F(W) is symmetric if it is invariant under orthonormal transformation. With B is

defined in (3.7), set F(§27,§7) = —F(B). Define F¥ = gTI;, Fii = (,?sz It follows from
(3.7) that

(3.12) (F7) = S(F)S.
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X~ |2
Lemma 3.4. For any C' symmetric function F(B), set ¢ = V;' , then there exist cp,
depending on (?2'7,67, F), such that

(3.13)  F9¢i; = cmém — Y _n(F(B))i+ F (55> = %% + 6i75)-
m l

Proof. By (3.7),

Gij = (Wi + i)
z

= > (wis + vy — v0a) + i)
.

= Z (v (vagi + Gijm — vi0a) + yavs)

1
_ % P WY 2o YmPm
Zl:’)/l(_bml +( w(]w+ i) (,0]2(1 +w)2 )l)

+6i5 VA = Vv + 8ivi
‘d)l' _|_ .¢l. A I
_ Z'Yl(_bijl n (72 j TP i Zm Ym®m. ))
l

ww+1) w?(1 4+ w)?
+655 VY — v + 853 + € b

where we used the fact that tensor A;; := 7;;+ve;; is Codazzi for any function v € C3(S").
We rewrite above identity as

Z(’Yz")’l¢lj F b ViV 2o WmPmi

¢ij w(w + 1) w2(1 +w)2 )Czld)m
+0i [V = i + 875 — Z Yibiji,

l
or equivalently

SV $S — (2 dm) = VAT = (viry;) + (V'y)? — (Z Yibiji)-
!

Set ¢ = >, FYcll,

Figi; =Y cmbm = — > FI(B)wbiji+ F7 (55| VA* =57 + 6573
m l

contracting above identity with F¥_ it follows from (3.12),

= =Y w(FB))i+ F7(6;[VA* = 757 + 8-
l

Proposition 3.5. If M satisfies (3.3), then

(&

maxgn f) =

1
n—k .
< X| < X<(7
)" < min X < e X < (S
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Moreover, there ezits a constant C' depending only on n, k, mingn f, |f|c1 such that

max |Vp| < C.

Proof. (vi;) is semi-negative definite at maximum point of p and Vy = 0. By (3.8),

(n—k)y
e
r=

or(B) = e g (B) > "R,

This yields an upper bound of 7. A lower bound of v follows similarly, as (v;;) is semi-
positive definite at any minimum point of p.
To obtain an upper bound for |Vp| is now equivalent to obtain an upper bound of

X7~ |2
¢ = @. Suppose p € S" is a maximum point of ¢. At p,

(3.14) v’§7|2 =0, Vw=0, B= (—vij + 0ij)-
It follows from (3.13) with F(B) = ox(B), at p,
0 > ) Fig,

ij
= = wlonB)i+ Y 0 65V = v + 6i577)
l i

> Z ,yl(ef(nfk)fywkflf)l
l

= ((n=k)VAPf = Vy-Vf)eltmmrwht

(3.15) > of|TAf2 - CTAlelE- k1,
where ¢ > §,C < % are two positive constants with § depending only on n, k,inf £, |V f|.
The gradient estimate follows from (3.15). O

3.2. C?-estimates and the existence. We precede to prove C? a priori estimates, this
is equivalent to obtain curvature estimate for M due to C! estimates we have already
obtained. For this purpose, it is convenient to work directly on induced metric g on
M c R™!. For X € M, choose local orthonormal frame {e1,--+ ,ep}on M, and v = ep41
is the unit outer normal of the hypersurface, such that {ey,--- ,e,.1} of R*™! is a local
orthonormal frame in R"*!. We use lower indices to denote covariant derivatives with
respect to the induced metric.

The second fundamental form is the symmetric (2, 0)-tensor given by the matrix {h;;},
and we denote the Weingarten tensor {h!} = {g/'h;;},

We have the following identities,
Xij = —hyv (Gauss formula)
(3.17) (v); h!X; (Weigarten equation)
' hijk = hir; (Codazzi formula)
Rijii = hikhji — hiyhji,  (Gauss equation),
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where R;jp; is the (4,0)-Riemannian curvature tensor. We also have

hijkr = hijik + b Riak + him Rjmik

3.18
(3.18) = hptij + (Pmgihit — hihig) Rk + (R bt — hinthig) .-

Since {ei, - ,en} is an orthonormal frame on M, g;; = 05, hij = h; The principal
curvatures (k1,--- ,Ky) are the eigenvalues of the second fundamental form with respect

to the metric which satisfy
det(hij — Hgij) =0.

The curvature equation (3.3) on S™ can also be equivalently expressed as a curvature
equation on M,

u(X)

= T\"“f(m)’ VX € M.

(3.19) oK1, kn)(X)

Proposition 3.6. For 1 < k < n, let F' = o, = ®Pu and denote H = o1, then at a
mazximum point of %,

FI() = Lo u+20.u] — (L)X, X)) — (k—1)(£)®

3.20 ij = u u
( ) +(k - 1)¢‘A|2 - %sz;mlhij;shml;m

where A denotes the second fundamental form.

Proof. By definition, u = (X, v). Compute the first and second order covariant derivatives,
we have

us = hg <X, Xl>

3.21
(3.21) uiy = (X, Xp) + hig — (h?)iu

Also since (h;j) is Codazzi, by Ricci identity and Gauss equation,

hijt = haij + (Pakhim — Pambik) g + (hijhim — hamhig) i

(322) Fijhij;st = Fst - Fij;mlhml;shij;t'
At any maximum point P € M" of %, (%)I(P) =0. At P,
(3.23) 1 (E)ij = V=50 - ﬂ(ﬂ)z o %(I)j - (I)uu]

u
— lpigp.. _ 1(H\pij,, .
- uF H"J u(u)F Uig-
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Apply formulas (3.21) and (3.22),
WFUHjj = F o
= iF” [hij;ss + (hijhsm - hjmhsi)hms + (hjshsm - hjmhss)hmi]
= PRy + kBIAR — LFU(h2); H
= 2P — 1R B + k@\AP (
= %[CI)SSu + 2P ug + <I>uss] - fF” mlh
—(T)F(h%)i
= 1[0 u+ 20, us] 2 [H(X, X))+ H — |Au]
1sz mlhw Shmls+kq)’A’2 (%)F” h2 ’LJ
= 1[<I>ssu+2q> us) + H(X, X)) +(

i (i),
ml;s T k;(I>|A|2

D:\m

(3.24)

iFU ml hl],shml,s ( - 1)¢| ‘ (u )FU (hQ)lJ
We also compute
—1(H Fij’u,i‘ = -1 F” hi‘-l<X,Xl> +hz - (h2)l u
u\u J u\u 75 J J
(3.25) = —LUOR(X.X) — ko(2) + ()P,
=~ (DulX, X)) = () (X, X)) — k() + (5) F (1),

where (h2)ij B hikhkj~
Adding up (3.24) and (3.25), and using the critical point condition, we obtain

Fii(H) = L@eu+20.u) +o(£) (X, X)) — (£)0u(X, X)
—(k — 1)(%)@ — %Fi‘j;mlhz],shml ] ( - ]')(§|14|2
(3.26)
= L@ u+ 20,0, — (E)0(X, X;) — (k- 1) (L) o
—u P higishus + (k = 1)®|AP,
(3.20) is verified. O
C? estimates can be established with the help of Proposition 3.6 and Corollary 2.9.

Lemma 3.7. If M satisfies equation (3.19) for some 1 < k < n, then there exists a
constant C' depending only on n, k, mingn f, |f|c1, and |f|c2, such that

(3.27) max o <C, |V <c.

Proof. We have already obtained the C? and C! estimates for p. For the case of k = 1,
equation (3.19) is a mean curvature type equation which is of divergent form of quasilinear
PDE. C? estimates follows from the classical quasilinear elliptic PDE theory. We work on
2 <k <mn-—1cases. When k > 1, the estimation of the curvature bound is equivalent to
the estimation of mean curvature H (which yields C? bound on p). To see this, suppose
mean curvature H < C'is bounded from above. Since k € I'y, C I'y, (k]i) € I'1. Hence, for
each 1,
C>H-= 0'1(,%) = K; +01(/€|i) > K.

This give an upper bound of curvature. A lower bound follows from the fact o1(k) > 0
and k; < C for each 1.
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As u is bounded from below and above, we only need to get an upper bound of%.
Suppose P € M where % achieves its maximum, it follows from (3.20)

0> Fi(l)

u /ij
—Lpimlp, s + (b — 1)®@| Al2
Recall (X)) = |X|_(”+1)f(|§—‘) and with C°, C! estimates of p = |X| , we have the
following estimates.
[©4/(P) < C(n, k,mingn f,|f|c)
[®5i(P) < C(n, k,mings f,|fle1,]fle2) (1 +|A|(P))

On the other hand, |u;| = \h;-ppj] < ¢3]A|. By equation (3.19),

o1 _ 0o

U ok

At a maximum point P of the test function 2L, one has

(@ _ (o) _bn

o1 Ok ¢

In Corollary 2.9, set r = %(P), then

Fij;mlhij;shml;s S 2T(u¢)s - ﬁTQUd)
< G (nv k, mingn f, ’f‘Cl)’A| + CQ(n’ k, mingn f, |f|Cl)
With the above estimates, (3.28) can be simplified as
(3.29) |A|2(P) + c4] A|(P) + ¢5 < 0,

where ¢4 and c5 are constants depending only on n, k, mingn ¢, |f|c1, and |f|c2. Hence
at P, |A|(P) < C. In turn

< (C, forany X € M.

This implies (3.27). O

We prove Theorem 3.2 using the method of continuity.
Proof. For any positive function f € C?(S"),for0 <t<land 1<k <n —1, set
f@) = (1=t +tf7* (@) 7"
Consider the following family of equations for 0 <t < 1:
(3:30) ok (51, n) () = (@) (0 + 9022, on 87,

where n > 2. We want to find admissible solutions in the class of star-shaped hypersur-
faces. Set
I = {t €[0,1] : such that (3.30) is solvable.}
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I is nonempty because p = [Cﬁ]fﬁ is a solution for ¢ = 0. By Lemma 3.5, Lemma
3.7, Lemma 2.6 and Lemma 2.7, equation (3.30) is unform elliptic and concave, apply the
Evans-Krylov theorem and the Schauder theorem, we have

ol csasny < C,

where C' depends only on only on n, k, mingn f, maxgn f, | f|c1, | flc2 and . The a priori
estimates guarantee that I is closed. The openness comes from Lemma 3.3 and the inverse
function theorem. This proves the existence part of the theorem. The uniqueness part of
the theorem follows from Lemma 3.3. O

4. ISOPERIMETRIC INEQUALITY FOR QUERMASSINTEGRALS ON STARSHAPED DOMAINS

In this section, we use a geometric flow to establish isoperimetric inequalities for quer-
massintegrals of k-convex starshaped domains in R**1.

Theorem 4.1. Suppose 1 < n — 1, and suppose ) is a k-convex starshaped domain in
R 1 then the following inequality holds,

1 1
(4.1) (Vina1)—#(2))7717F < Co (Vi i (€2)) 5,
where
1
(Vins1)—k(B)) 1k

_1
(Var(B)) "+
B is the standard ball in R"1. The equality holds if and only if Q is a ball.

Cn,k =

We consider the following normalized evolution equation on hypersurface M" in R**1.

(4.2) 9X = (

— ru)v,

F(x)

where F'(-,t) and r(t) are to be determined, u =< X, v > is the supporting function of
the hypersurface.

We derive the evolution equations of various geometric quantities for the following
general flow.

Proposition 4.2. Under flow (4.3), the following evolution equations hold.

Ogij = 2fhsj

8tV = —Vf
(4.4)  Ohiyj = —ViV,f+ f(h?)
o = —V'Vf — f(h2)]
o = =207 (g7 W) fij — f(or(g7 h)or(g™ h) — (k 4+ 1)orr1(g™"h))
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Proof. Pick any local coordinate chart (z,- - -

as (X;,v) =0, Vi, by Weingarten equation (3.17),

(gij)t

Since v is a unit vector field, 1, has only tangential component.

Xl> As <l/, Xl>

compute (v,

<Vt’ X1> =

=0,

—(v, X)) =—(v

(Xi, Xj)¢
(Xig, Xj) +
(X1, Xj) +
((fv)i, Xj) +
)i X5) + f(Xi
(

f Z hiXi, X;
thiglj + 1> b
l l

2fhij

(Xi, Xjt)
<X17th>
(X, (fv);)
i (V)5)
)+ £ “Zthl

(fv)i) = =, (fiv) = = fi.

This verifies the second identity in the proposition.
For the third identity, again using the fact v is a unit vector field, by the second identity
we just proved and the Gauss formula in (3.17),

hijt

—(Xij, V)t

—(Xij,v) — (Xij, )
—((fv)ij,v) + (hijv, Vf)
—fij — f{vij, v)

—fij = F{(hiX2)z,v)
—fij — F((h); Xw) —
—fij + f<h£hljy, V)
—fij + [hih;.

f<h£,Xl]7 V>

,Zn) of M, denote X; _896,1':1’...

23

7n’

We only need to

The fourth identity follows from the first and third, and the fact gfj = —gitgmi Gim,t- The

final identity in the proposition follows from the fourth identity and Proposition 2.2.

g

Corollary 4.3. Under flow (4.2), where F' is homogeneous of degree 1, then we have the

following evolution equations.
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1

8tgz-j = 2(; I ru)hij
O = _V(F —ru)
1 1
Othyy = —=ViVji(= —ru) + (= —ru)(h?);
(4.5) o O i -
oh = —VZVJ-(F — ru)l— (f - ru)ih )
Oor = =2 Uijvjvi(f —ru) = (5~ ru)a 1\
nijig (L 1 Sij (1,2
O0F = —FYV Vj(F—ru)—(F—ru)FJ(h )

Furthermore, the following heat type evolution equation for Weingarten map h;- is valid.
Proposition 4.4.

: L T R VP A
: . 2 . . .
— g VIFVF — S (h); +1V'h; < ViX, X > +rhj.

Proof. Tt follows from previous corollary, (3.18) and (3.21). O

4.1. Monotonicity properties. We want to choose F' and r in flow (4.2) such that the
corresponding global geometric quantities are monotone along the flow. The Minkowski
identity (1.4) plays key role here.

From identities in Corollary 4.3, for 1 <1 <n —1,

1 .
8t/ odpig :/ atUl—&-Ungl]atgijdﬂg
M M 1
By -
1 (2
(4.7) =(I+ 1)/ (5 —ru)ordug
M
1
=(+1) / FUHldﬂg _7"/ uoL41dftg
M M

1
= (l+ 1) / Fo-l-&-ld:u’g —T’Cn’l/ ald,ug ,
M M

where C),; = %11()[) is the constant in the Minkowski equality.
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For the special case | = n and for any f, by Proposition 4.2, along flow (4.3),
1 ..
0 [ oudny = [ 00+ au39 0k
M M
— —/ f(ZO'n_l;i/\? — anal)d,ug
M i

=({+1) /M fono1 — onot)dug

(4.8)

That is, Vp(2) is a topological invariant. This gives topological obstruction for the problem
of prescribing curvature measure Cy.

From (4.7), if one wants to fix [, odpug, one may choose F' = - in equation (4.2)

Ok—1

and define r as

ag Ok —
Jor, P dpyg
Cn.k f M Ok

To be precise, we consider the normalized flow

(4.9) r(t) =

(4.10) X = (Ukl - Tu) v,

Ok
The first step is to get an estimate on r(t).

Lemma 4.5. r(t) is invariant under rescaling, and

(4.11) r(t) < (L) (1) = Cpa,s

Ok

equality holds if and only if My is the standard sphere.

Proof. The inequality follows directly from the Newton-MacLaurin inequality. If the equal-
ity holds, this means the Newton-MacLaurin inequality holds at every point of M;. So M,
is umbilical at every point, it is a sphere. ]

The following monotonicity property is crucial.

Proposition 4.6. For any k-convex domain ), under flow equation (4.10), we have
(1) / ordpg s a constant;
M
(2) ok—1dpg is monotonically non-decreasing.
M

Proof. By the choice of r and equation (4.7),

(4.12) 8t/ ordpg = 0.
M

This proves the first part of the statement.
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From equation (4.7),

1
3t/ O—1djig —k{/ FdeMg—TCn,kl/ Ukld:ug]
M M M

S %k | onad
/M Fory TCnk—1|0k—10g
(4.13) r Ok+10k—1
Jor P du
k/ Mo gCn,k1]0k1dug
M L Cn,k fM O-kd,ug

- k/ 1 _ Ter1Dor—1(1) Cr o1
 Ju ar(I) Ch ke

where we used the Newton-MacLaurine inequality in the last step. O

I
=~

:| O-k—ld/"g =0,

We want to establish the following longtime existence and convergence of flow (4.10).

Theorem 4.7. If Qg is k-convez starshaped domain with smooth boundary My, flow (4.10)
exists all time t > 0, it converges to a standard sphere centered at the origin.

By a proper rescaling, we will assume Vi(Qy) = Vi(B) where B is the standard ball in
R+

The rest of the section is devoted to the proof of Theorem 4.7.

4.2. The Harnack estimate. If M" is starshaped, it can be parametrized as X = p(z)z,
where x € S™. All the geometric information of the hypersurface except the parametriza-
tion are encoded in the function p(z).

Write p = | X (t)| = p(z(t),t), where X evolves according to

Xt = fl/.
p satisfies
9Pyt
dt - pt px Tt
By (3.2),
pz —Vp
V= ——
p* + |[Vp|?
We have,
x—V
(4.14) FEl = up = Xy = (px)e = (pr+ o - 2z + pay.
P> +1Vpl?

Note that z; L x, equalize the tangential components of S” in (4.14),
fVp

p\/P? + [Vpl?

Tt = —
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Therefore, B
fIVpl?

py\ P2+ [Vp|?
Put the above identity to (4.14), equalize the normal component of S™ in (4.14),

fp A/ + Vol

Pt = —Pz Tt + — =
P?+ Vol g

px'ﬁt:ﬁp‘fﬁt:—

In particular, if X satisfies equation (4.2), p satisfies

(4.15) 5 VPE+ Vol 1

tP = TF —Tp.

Equation (4.15) is equivalent to equation (4.2) up to diffeomorphism, if we can prove that
the starshapedness is preserved along the flow.

For the gradient estimate, we prefer to work on equation (4.15). As in the previous
section dealing to the problem of prescribing curvature measure, let v = Inp, and we
choose a local orthonormal frame {¢;} ; on S™.

By the homogeneity of F,

8 (JJ2
4.16 — _
( ) tY F(B) r,
where
< S v ViYi 2atm VY Ym
=1/1 VA2, B = (—~i;+ 6 J J . ,
w +1Val%, (—ij + 0ij + Oy SETEmE ),

as defined in (3.7).

| 2

, assume (4.16) preserves k(t) € Ty,

- - W OF
(4.17) oo = Lljvlvj‘¢ + Wy - Vi — m - 3TU

Proposition 4.8. Let ¢ = W;
(633 [V ? = 237 + 0ijvi).

where Wy, is a one-parameter family of vector fields depending on time, and L;; is an
elliptic operator defined as follows,

w2 g
(4.18) Lij= mEt,

where F' defined as in (3.12). In consequence, NV~ is bounded from above independent of
time t.

Proof. k € Ty is equivalent to B € T'y, hence F(B) > 0. Rewrite the last equation in
(4.16) as

w2

- e+
Proposition follows from Lemma 3.4 with a straightforward computation using identity
(3.13). O

F(B)
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The following Harnack type gradient estimate is a directly consequence.

Corollary 4.9. Let p be a positive solution to (4.15) on S™ x [0,T). Then there exists a
constant C' which depends on p(+,0) but independent of t, such that at each timet € [0,T),

A < O mi .
(4.19) Hé%Xp( ) <C Héllnp( 1)

Proof. We prove the corollary for each fixed time to € [0,7'). Assume p(-,%p) achieves
maximum at x4 and minimum at x_, and let I' : [s1, so] — M"™ be a path joining z_
and x. We have

p(l‘,,to) s1 @
_ [T,
(4.20) o, P%
51
~ 52
< C'/ ar ds.
s | ds

By taking I' to be the shortest geodesic with constant speed 1 which joins z_ and x4,
214l
we obtain / ds =d(x_,z4+) <. O
51

ds
Lemma 4.10. Suppose that p > 0 satisfies equation (4.15), then at any time ty > 0, if
xg € S™ is a minimum point of p(x,ty), then p(xg,to): > 0, strict inequality holds unless
M (to) is a round unit sphere at the origin.

Proof. The minimum point of p(x,tp) is the same as minimum point of ~y(x,tp). By
equation (4.16),
w2($0,t0)

F(Bro.to) 0

’yt(an tO) =

As ¢ is a minimum point, Vy(xg,t9) = 0, so at (zg,t0), w = 1 and

(4.21) B=(-Vy+I)<I.
Hence,
(4.22) F(B(xo,t0)) < F(I).
That is,

w2 (1‘0, to) 1
(423 F(BGeort0) ~ F(D'
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1
By Lemma 4.5, r(t9) < m unless unless M (tp) is a round sphere (by normalization, it
is a sphere of radius 1). We have
2
w*(o, to) 1
t)) = ——"— —1r(tyg) 2> —— —1r(t 0
Yt (z0, to) F(B(ro.to)) 7(to) > F{) 7(to) > 0,

unless unless M (tp) is a round sphere of radius 1. We claim if ~;(zg,t9) = 0, this round
sphere must centered at the origin. Suppose its center z is not the origin, we may assume
z=(0,---,0,s) for some —1 < s < 0. Now

1
v(x, tg) = 5 log(1 4 5% + 25241).

The minimum point is g = (0,---,0, 1), it is easy to compute that
=2 s
-V tg) = —=1.
’7(1:07 0) (1 +8)2
The strictly inequalities will occur in (4.21) - (4.23). Thus,
2
w*(o, to) 1
0, t0) = ———2— —1(tg) > —— —r(tg) = 0.
15010 = BBt 7 T
contradiction. O

The following C° estimate is a direct consequence of Corollary 4.9 and Lemma 4.10.

Corollary 4.11. Let p be a positive solution to (4.15) on S™ x [0,T). Then there exists
a uniform positive constant C' which does not depend on time t, such that for ¥Vt € [0,T),

(4.24) 0< & <pla,t) <C,

for any point (z,t) € S™ x [0,T). Moreover, u(zx,t) > ¢ > 0 for some constant ¢ indepen-
dent of t.

Proof. By Lemma 4.10, p(zg,to); > 0 at any minimum point xg of p(z,ty), unless M (to)
is a round unit sphere centered at 0. That is, min,cgn p(x,t) is strictly increasing at ¢
unless M (o) is a round sphere centered at 0. In any case,

4.25 i £) > mi 0).
(4.25) min p(z,t) > min p(z,0)

An upper bound of p follows from the Harnack inequality (4.19).
The last statement in lemma follow from the identity

0

P2+ Vol

Since u is bound from below by a positive constant independent of ¢, flow (4.15) preserves
the starshapedness. We want to show that I'j is also preserved along the flow. From the
property of I'y, we only need to show oj > 0 is preserved. This is equivalent to show
F > 0 is preseved.

u =

0
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Proposition 4.12. There is C > 0, such that % <C.

Proof. We consider function G = v, + r. We may rewrite equation (4.16) as

(4.26) G = = F(V7, V"),
where (f”) ( aaF ) > 0. Differentiate equation (4.26) in t variable, and notice that r is
independent of x,

—ij oF
Gy = Z F J(’Yt)ij + Z ;(Vt)l
ij
= Z Gz] + Z 7Gl
ij

G is bounded from above by the maximum principle. Since 7 is bounded is bounded.

’ F(B)
The boundedness of = o follows from C? and C! estimates. O

1
4.3. C? estimates. Denote ¢ = —, ¢ satisfies the following evolution equation.
u

Proposition 4.13. Let p be a positive solution to (4.15) on S™ x [0,T). We have
(4.27)

Awi: 2 -1
Op = ﬁF]V Vi — F2F(h ) = FTF(V%WO) Tro+reT Vip <X, ViX >

Proof. We first write down the evolution equation of u using (4.2), (4.5) and (3.21). We
work on local orthnormal frames on M (t).

u = (Xp,v)+ (X, )

= % —ru — ;(X,XQ(; —ru);

Fhj;
F2

R — Z<X,Xl>(

F + TUZ)

1 F i h; h2);s
= o P OO S o

. 1 Fijuij 1 sz(h )”U
= F—ru—l— 2 _F_‘_Fi—i_ zl:XXl

Proposition follows from above identity by inserting u = %. O
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Proposition 4.14. Let p be a positive solution to (4.15) on S™ x [0,T). We have

i L i 20 _; P klmnsi m
Or(ipht) = ﬁFlele(gohj)) — g V'FViF + ﬁF“’ VRV b

(4.28) — 5 ERIVRQV (phh) + rVi(phi) < ViX, X >
2\i )
—2p [(hF)j — rh;} :
Proof. Proof follows from Proposition 4.6 and Proposition 4.13. O

Proposition 4.15. Let p be a positive solution to (4.15) on S™ x [0,T) and let &(t) =
max (k1(z), -, kn(xz)). Then fort >0,
zeM}
max pk(t) < max pk(0),
(4.29) na o
with the equality holds if and only if My is a sphere centered at the origin. Since o1(k) > 0,

we have uniform curvature bounds.

Proof. Let x¢ be a point such that hl(zo,ty) = k(tg) for some direction e;. By (4.28), and
concavity of F

1\2
(‘ph%(x(]vtO))t < —24p[§£(1;) — rh%].

At z9, hi = &(t) > k; for all i. By the monotonicity, homogeneity of F' and By Lemma
45,
h% > 71 >
T.

F(s) = F(I) —
We obtained at zq, (phl(z0,t0)): < 0.

We claim for any tg, (phl(wo,t)): > 0 unless M(to) is the unit sphere centered at 0.
Now suppose (phl(zo,t)); = 0, all inequalities in (4.30) must be equalities. In particular,

1
)= ——.

By Lemma 4.5 and normalization, M (tp) must be a sphere of radius 1. So ki(z,tg) =

< kp(z,tg) = 1,Vz € S™ and we may use the standard spherical paramerization for

(4.30)

M (ty). Suppose its center is z # 0, we may assume z = (0,---,0,s) for some —1 < s < 0.
Now 1

u(z,ty) =14 sxpaq, T, ty) = ———.

(2, t0) il @(@,t) = 7 p—
The minimum point is g = (0, --,0,1), it follows from (4.28),
; | - ; °); ; L hiok
Oi(ph) = ﬁF ViV (ph3) — 2@[ T 1 _ rh;} = ﬁF ViVip <0,

contradiction. O

We now prove Theorem 4.7.
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Proof. By C? estimates and Proposition 4.12, k € 'y is preserved along flow (4.15). By
Lemma 2.7, the equation is uniform parabolic. We may apply the Krylov Theorem [32]
and the standard parabolic theory to conclude the longtime existence and regularity for
the flow. To get exponential convergence, we use the uniform ellipticity of F. There is
co > 0 independent of ¢,

(8F(B))(a:,t) > col, V(x,t).
8[),']‘
Thus, as n > 2,
OF(B) OF(B)
>
Ty = 0t (),

where Aj;(W) denoting the largest eigenvalue of W. By C? estimates, there is 3 > 0
independent of ¢ such that

;Z > aglff) (641N = 7ivy) = BIVA.
By Proposition 4.8,
(431) o (V) < 2,59, (00 4 w9, (20 — e
Set Q = eﬁt’V;P, Q satisfies differential inequality
(4.32) XQ < Li;ViV;Q + Wy - ViQ.

Therefore, @ is bounded from above independent of t. From there, we conclude |[Vv|? — 0
exponentially as ¢ — co. By our normalization, p — 1 and Vp — 0 exponentially as
t — oo.

For the exponential convergence of vmp, apply integration by parts,

=m =m-+1 1 =m—1 1
|9 ol < ([ 9 o 9 e

By the a priori estimates, ||§erl pllzee(sny < ¢ for some ¢, independent of ¢. An induc-
tion argument yields that, for each m € NT, there is C,,, > 0, 3,, > 0, such that

IV" pllr2(gny < Cme™ Pt

The Sobolev Lemma implies V’”p — 0 exponentially and ¢ — oo, for each m € N*. O

We prove Theorem 4.1. In fact, the following is true.

Theorem 4.16. Suppose Q is a C? starshaped domain in R"1. Assume 1 <k <n —1,
that

k(z) €Ty = {A€eR"oy(N\) >0,V =1,---  k.},
then the following inequality holds,

1

(4.33) (Ving1)—k(Q))T7F < Cp (Vi 4(Q))7F,
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where

1
(Vint1)—k(B)) mF1=F
1
(Vai(B))"*
B is the standard ball in R* 1. The equality holds if and only if Q is a ball.

Cn,k =

Proof. Case 1. § is k-convez.
Inequality (4.33) follows directly from the above Proposition 4.6 and Theorem 4.7. We
examine the equality case. Recall (4.13),

0pt1(R)ok—1(K)

Jur (x) dpg
— 1— ThiF _ _
O /Mak 1(k)dpg k:/ [ nkaak i Chk 1}01@ 1dpig

Ok+1(L)ok—1(I) Cp -1
>k 1— . _1du, = 0.
= /M[ (1) Gy |1 =0

(4.34)

At any time ¢y > 0, inequality is strict in (4.34) unless

Ok t1(K)ok—1(K) :Uk(/f)
orr1(Dog1(Now(k) i (1)’

That is the equality is the case in (2.8), this implies M (¢p) is umbilical almost everywhere.
As M(ty) is C?, it is umbilical everywhere. M (ty) is a round sphere for each t > ty. In
particular, if equality is held in (4.33), then M is a sphere.

Case 2. General case.

We may approximate ) by k-convex starshaped domains. The inequality follows from
the approximation. We now treat the equality case. We first note that both | v Okdptg
and f v Ok—1dpig are positive, since there exists at least one elliptic point on an embedded
compact hypersurface in Euclidean space and also the k-convexity condition. Suppose 2
is a weakly k-convex starshaped domain with equality in (4.33) attained. Let M, = {x €
Moy (k(z)) > 0}. M is open and nonempty since M is compact and embedded in R" 1.
We claim that M is closed. This would imply M = M, so (1 is k-convex, by Case 1, we
may conclude 2 is a standard ball.

We now prove that M, is closed. Pick any n € Cg(M+) compactly supported in M, .
Let Mg be the hypersurface determined by position function X; = X + snv, where X is
the support function of M and v is the unit outernormal of M at X. Let {5 be the domain
enclosed by M. It is easy to show M, is k-convex starshaped when s is small enough.
Define

a.e. in M(to).

Vn+1 n+l—k (Q)
(4.35) Ty (Q) = D=k 7
)
Therefore Z,(25) — Z;(2) < 0 for s small, i.e.
d
7Ik( s)|s:0 =0.

ds
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Simple calculation yields

d
| iy lo =@+ 1) [ v (o,
S J M, M

Therefore,
d

ST = 4 [ (@141(8) = 1on() iy =0

. _ k(n—k) 1
for some constant A > 0 with ¢; = EF D) =k 1) Ty ak)ﬁ
M ¥R

> 0 and for all n €

C3(My). Thus,
(4.36) ok+1(K(x)) = crok(k(x)), Ve € M.

It follows from the Newton-MacLaurine inequality, there is a dimensional constant C’kn

such that

o1 (h(x)) < Cronoy ™ (k(2)), Vo € M.

In view of (4.36), there is a positive constant co, such that

(4.37) or(k(x)) > ca >0, Vo € My,

where ¢y = (Cf—l)k is a positive constant depending only on n, k, and €. (4.37) implies
k,n

M is closed. g

5. APPENDIX
We present Garding’s theory of hyperbolic polynomials here.

Definition 5.1. Let P be a homogeneous polynomial of degree m in a finite vector space
V. For § € V, P is called hyperbolic at 6 if P(0) # 0 and the equation P(x + t0) = 0
(as a polynomial of t € C) has only real roots for every x € V.. We say P is complete if
P(z +ty) = P(x) for all x,t implies y = 0.

Proposition 5.2. Suppose P is hyperbolic at 0, then the component T' of 6 in {z €

V; P(x) # 0} is a convex cone, the zeros of P(x + ty) as a polynomial in t are real
Ve,y € V. The polynomial % 1s real, and it is positive when x € T'. Furthermore,

(%)% is concave and homogeneous of degree 1 in I', equal to 0 on the boundary of I

Proof. We normalize P(f) = 1, then there exist t; € R,j = 1,--- ,m, such that
Pz +1t0) = (t —t1) X ... X (t —tpm).

In particular, P(x) = (—t1) X ... X (=) € R. Set
Ig={xe€V;P(x+1tf) #0,t > 0}.

[y is open and 0 € Ty as P(0 +t0) = (1 +t)" P(0) only has the zero t = —1. Notice that
Iy is also closed in {z € V; P(x) # 0}. If © € I'y, then P(zx + t0) # 0, when ¢ > 0. Hence,

Ty = {z € Ty, P(z) # 0}.

If x € Ty, then = +t0 € 'y when t > 0. This implies that I'y is connected, Therefore
Ax+pb € Ty for all A > 0, u > 0. That is, I'y is star-shaped with respect to 6 and I'g = T".
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For y € I" and ¢ > 0 fixed,
E,s={x € V;P(x 4106 + isy) # 0, Re(s) > 0}
is open. If s # 0, P(id +isy) = (is)mP(%e +y) = 0, the hyperbolicity implies s < 0. That

is, 0 € Eys. If x € B 5 and Res > 0, then Hurwitz’ theorem implies P(z +i66 +isy) # 0.
This is still true when Re(s) = 0 since = + isy is real. Therefore, E, 5 is both open and

closed, and E, s = V. Thus,
Pz +i(60+y)) #0,Yx € R",y € I',§ > 0.

For T' is open, the above remains true for 6 = 0. Equation P(z + ty) = 0 has only real
roots, for if ¢ = t1 + ity is a root with to # 0 we would get P(%ﬁly +iy) = 0. This
means that y can play the role of 8, I' is star-shaped with respect to every point in I'. The
convexity of I" follows. We also have P(y) > 0 for all y € T.

We now prove the concavity statement in the proposition. As P(z + ty) has only real
roots for y € I', there are t; € R, j =1,...,m,

Pz +ty) = P(y)(t —t1) X ... X (t —tm).
In turn,
P(sx+y) = P(y)(1 — st1) x ...(1 — sty,).
If st +y € I', we must have 1 — st; > 0 for every j. If f(s) =logP(sz + y), then
F@=-Y b =y
1 — st; (1 — st;)?
Therefore, by Cauchy-Schwarz inequality,
1) dQ(e%)

me” gz £ (s)* +mf(s)

O

If P is a homogeneous polynomial of degree m. For z! = (xll, d)yev,i=1,..m,

oy T
we denote < !, % >=>"7 2! -2 as a vector field. We define the complete polarization of

j oz,
P as
P(z!,...,2™) = % <zt 883: > .Lo<az™, 8833 > P(z).
It is a multilinear and symmetric in z!,...,2™ € V, independent of x, and that
P(z,...,z) = iﬁp(m) = P(x),Yz e V.
T m! dt™ ’

And
P(tiz! + ... + tpz™) = mlty .t P2t 2™) + .

where the dots denote terms not containing all the factors t;.
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Lemma 5.3. If P is hyperbolic at 6 and m > 1, then for any y = (y1,...,yn) € T,
“~ 9
— . P
Q) =D vi, Ple)

is also hyperbolic at 0. In general, if z',...,z' € T for some | < m, then
Ql(az) = ]5(1‘1, ozt ey )
1 hyperbolic at 6.

The proof is immediate by Rolle’s theorem. Using polarization and Lemma 5.3, we list
some of important examples of hyperbolic polynomials.

Corollary 5.4. The following polynomials are hyperbolic.
(1) The polynomial P = (11)% — (z2)? — ... — (z)? is hyperbolic at (1,0, ...,0).
(2) The polynomial P = xy...x, is complete hyperbolic at any 0 with P(0) # 0. The
positive cone I' of P at (1,...,1) is

I'={z=(x1,....,xn);2; >0, Vj}.

(3) In general the elementary symmetric function op(x) is complete hyperbolic at
(1,...,1), the corresponding positive cone Ty is

I = {oy(z) > 0,1 < k}.

(4) Let S denote set of all real n x n symmetric matrices. Then op(W),W € S is
complete hyperbolic at the identity matriz, the corresponding positive cone is

Iy = {O'Z(W) > 0,VI < k‘}

(5) For W', ..., W' e Ty, | < k, then Qu(W) = P(W',..., WL W,...,W) is complete
hyperbolic in T'y,.

Lemma 5.5. Suppose P is a second order complete hyperbolic polynomial. Suppose both
roots of f(s) = P(sy + w) vanishing for some y € T' and w € V. Then, all the roots of
g(s) = P(sz 4+ w) are vanishing for any z € T.

Proof. Since P(y + tw) = P(y) # 0 for all ¢, we must have y + tw € I'. By the convexity
of I', we have z + tw € I for all t. So, P(z + tw) # 0. For any z € I" and all ¢,

P(2)(1+tA\)(1 4 th2) = P(z + tw) # 0,
A1, A2 are the roots of P(sz + w). Since t is arbitrary, this gives A\; = A2 = 0. O
Lemma 2.4 is a special case of the following proposition.

Proposition 5.6. Suppose P a homogenous polynomial of degree m, suppose it is hyper-
bolic at 6 and P(0) > 0, then Vz!,...,.a™ €T,

Pzl 2?23, 2™) > Pzl 2l 2?, o 2™)P(2?, 2% 23, 2™)
(5.1) P(z',...a™) > P(at)m..Pa™)m.
If P is complete, the equality holds if and only if all 27 are pairwise proportional. This
1
is also equivalent that for x,y € I' not proportional, the function h(t) = P(x + ty)m is
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strictly concave int > 0. If P is complete, then Qi(X) = Pz, ....al,x, ..., x) is complete
ifm—1>2andz',...,2' € T. In particular, P(z',...,2™) > 0 if 2* € T and 27 € T when
m > 2.

Proof. Since P#(X) is concave in I', it follows that for any z,y € T', h(t) = P(z + ty)%
is concave in ¢ > 0. So, ' (t) < 0. A direct computation yields

9

B (0) = (m — 1)(P(y,y,z,....2) P(X) — Py, , ..., x)*)P(x)m 2.

We get the inequality

P(y’ y? x’ M) '/I:)P(X) S P(y’ x? et ',B)Q'

In turn, it implies

P(y,z,...,x)™ > P(y)P(z)™ L.

We now apply induction argument. Take y = 2! and assuming that (5.1) is already proved

for hyperbolic polynomials of degree m — 1. Let Q(z) = P(y, z, ..., z), we get

P, a™) > (Q(a2)..Q™) T
> (P(a")P(a?)™ ... P(a)P(a™)™ )T

which proves (5.1).

To prove the last statement in the proposition, it suffices to show that if m > 3,
Q@ (defined above) is complete. suppose Q(z) = Q(x + tz) for all z,¢. In particular,
Q(y +tz) = Q(y). That means that Q(ty + z) = Q(ty), so P(ty + z) — P(ty) = a is
independent of ¢. Since the zeros of P(ty) + a = t"™P(y) + a must all be real, it follows
that a = 0. This P(y + sz) = P(y) # 0 for all s, so it follows that y + sz € I'. Hence,

(sz +y + s2)
(s+1)

Letting s — 0o, we conclude that z 4+ z € T for all x € I'. This implies z + z € I'. We
can replace z by tz for any ¢, so x +tz € I for all ¢t and € T'. Thus P(z + sz) can not
have any zeros # 0, so P(z + sx) = s"™P(z). That is P(x 4+ tz) = P(x) for all ¢t and all
x € I'. Since P is analytic, that means P(x + tz) = P(z) for all ¢t and all x € V. By the
completeness assumption on P, z = 0.

Finally, we discuss the equality case in (5.1). By the above, we may assume m = 2.
If the equality holds, we have P(y)P(z) = P(y,x)?. This implies the roots of the second
order polynomial p(t) = P(z + ty) are equal, i.e., t; = to = —\ # 0. In turn, for all ¢,

Ply+ (t+ M)z —Ay) = (t+X)*P(ty + z) = P(y).

That is both roots of the polynomial f(s) = P(sy + (z — Ay)) are vanishing.

From Lemma 5.5, we have P(z + t(z — A\y)) = P(z) for all z € T" and all t. Since I is
open and P is analytic, P(z + t(x — A\y)) = P(z) for all z and all ¢. By the completeness
of P, x — Ay = 0. That is,  and y are proportional. O

elVxel',s>0.
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6. NOTES

1. The definition of curvature measures in this notes follows from Federer [12], where he
used Steiner’s formula to define them for sets of positive reach. Alexandrov [3] initiated the
problem of prescribing curvature measure Cy, which he called the integral curvature. The
problem of prescribing 0-th curvature measure is often referred as the Alexandrov problem
in literature. It was Alexandrov who formulated the problem through radial parametriza-
tion. The existence and uniqueness of solutions were obtained by A.D. Alexandrov [3].
It can be deduced to a Monge-Ampére type equation on S™. For n = 2 the regularity
of solutions of the Alexandrov problem in the elliptic case was proved by Pogorelov [39]
and for higher dimensional cases, it was solved by Oliker [37]. The general regularity
results (degenerate case) of the problem were obtained in [22]. The problem of prescribing
general k-th curvature measures was settled for starshaped hypersurfaces recently in [20],
though C° and C! estimates were obtained in [21] some time ago. The proof of Lemma
3.4 presented here is due to Junfang Li [33], which can apply to more general curvature
equations. Another proof of gradient estimate for equation (3.3) appeared in [23], there
the question of when solution to equation (3.3) is discussed.

2. The presentation of theory of hyperbolic polynomials in Appendix basically follows

the original paper of Garding [14]. Caffarelli-Nirenberg-Spruck [5] developed the study of

k-Hessian equation in the category of I'y, followed by [6] for k-curvature equation. The

proof of Lemma 2.7 is from [31], which in turn is inspired by [34]. Lemma 2.8 was proved

in [20]. Using & in C? estimates for k-curvature equation on star-shaped hypersurfaces

was introduced in [6]. The complication for (3.3) is that the right hand side depends on
1

Vp, the standard concavity of a,f is not sufficient in this case. C? estimate is still open
for k-curvature equation on star-shaped k-convex hypersurfaces with general right hand
side

Uk(H) :f(Vp(m),p(x),a:), z € S".

In a recent work [26] established C? estimates for admissible solutions of above equation
in the case k = 2 and for convex solutions for general k.

3. The classical isoperimetric inequalities for quermassintegrals of convex bodies are the
consequence of the Alexandrov-Fenchel inequality [1, 2] in convex geometry. Trudinger
considered such inequalities for k-convex domains in [42]. Theorem 4.1 was proved in [17].
The proof in [17] used un-normalized inverse mean curvature type flow for starshaped
hypersurfaces studied by Gerhardt [15] and Urbas [43], where they established longtime
existence and exponential convergence for a class of more general type of inverse mean
curvature flow. In section 3, we use normalized flow (4.10), which was initially devised in
[19] when they did not realize that the work of [15, 43] would imply the monotonicity of
the isoperimetric ratio Zy in (4.35). Flow (4.10) considered here has an advantage that one
can see how to design a flow to fit the monotonicity. Similar design was used previously in
conformal geometry in [27, 28]. Junfang Li pointed out that, one may also pick r(t) = ﬁ

in (4.10), as in a recent paper [18]. With this choice of r, the proof of C? estimates for
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flow (4.10) can be simplified. The monotonicity in Proposition 4.6 is reversed as
/ odig is monotonically non-increasing; / ok—1dpig is a constant.
M M

It is an open question if (4.1) is valid without the starshapedness condition. In the case
k = 1, Huisken [30] verified the inequality replacing the star shapedness by the assumption
that 02 is outward-minimizing. Again, in the case k = 1, (4.1) was proved for general 1-
convex domains in [7] for some constant ¢ which is a not sharp. Under additional condition
that Q is k 4+ 1-convex (without starshapedness assumption), inequality (4.1) is proved in
[8] with some no-sharp constant c.

4. The normalized inverse mean curvature flow
1 U
6.1 Xi=(=—-——-)v
(6.1) = (-2
preserves the surface area and increases the enclosed volume. This implies the isoperi-

metric inequality for mean convex star-shaped domain. The statement can be checked as

below.
d/ dpig = / Sy
dt M g M H n
(6.2) _ }1/ n— uH)d
= 0.
The evolution of the volume V() is
1 wu
d
LV = — ——)d
(6.3) ' /M({{ 2 /il
6.3 n
= —dp — Vv

vV
=EN )

where the last inequality comes from an inequality proved by Ros in [41], see formula (5)

on page 449.

5. The prescribing measure problem is a counter part of the Christoffel-Minkowski prob-
lem, which is the problem of prescribing area measures for convex bodies. The Minkowski
problem was considered by Minkowski in [35] in 1897. The differential geometric setting
of the problem was solved in early 1950s by Nirenberg [36] and Pogorelov [38] for n = 2.
The solution of the Minkowski problem in higher dimension came much later in 1970s by
Cheng-Yau [9] and Pogorelov [40]. The Minkowski problem is a special case (k = n) of the
problem of prescribing general k-th (1 < k < n) area measures in convex geometry. At the
other end (k = 1), it is the Christoffel problem. This case has been settled completely by
Firey [13]. In general, the problem of prescribing k-th is termed the Christoffel-Minkowski
problem. It is equivalent to solve the following equation

(6.4) ak(uij + U(Sij) =@ on S”,

with convexity requirement (u;; + ud;;) > 0.
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The intermediate Christoffel-Minkowski problem (1 < k < n) is still open, except for
some special cases. There are also some sufficient conditions, we refer to [40] and [24].
The necessary and sufficient condition for the existence of admissible solutions of equation
(6.4) is known (e.g., [25]). The main difficulty lies in the question of convexity for the
admissible solutions (which in general are not convez) of equation (6.4).

6. The Minkowski problem can also be considered as a problem of prescribing the Gauss
curvature on outernormals of convex hypersurfaces. The similar question was raised for
other Weingarten curvature functions oy (k1,- - , k) for fixed 1 < k < n in [4] and [10].
The corresponding equation is

On

(6.5) (uij + U(SU) =f on S".

On—k
When 1 < k < n, very little is known for this problem. No uniqueness result is known

except the case n = 2 (e.g., see [4]). If the prescribed curvature function is invariant under
an automorphic group G without fixed points, the problem is solvable [16].
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