
CURVATURE MEASURES, ISOPERIMETRIC TYPE INEQUALITIES

AND FULLY NONLINEAR PDES

PENGFEI GUAN

The material in the notes is compiled from the lectures given in the CIME Summer
School in Cetraro, 2012. It treats some nonlinear elliptic and parabolic partial differential
equations arising from geometric problems of hypersurfaces in Rn+1. A curvature type
of elliptic equation is used to solve the problem of prescribing curvature measures, which
is a Minkowski type problem. An inverse mean curvature type of parabolic equation is
employed for the proof of isoperimetric type inequalities for quermassintegrals of k-convex
starshaped domains. Both types of equations are fully nonlinear, they belong to the
category of general geometric fully nonlinear PDE.

The emphasis of the notes is the a priori estimates, which is the key in the theory of
fully nonlinear PDE. These estimates are intend to be self-contained here, with minimal
assumptions on basic knowledge in PDE and geometry, namely the standard maximum
principles for linear elliptic and parabolic equations, the elementary formulas of Gauss,
Codazzi and Weingarten for hypersurfaces in Rn+1, and the curvature commutator identi-
ties. Two theorems we would use without proof for higher regularity are: the Evans-Krylov
Theorem [11, 32] for uniformly fully nonlinear elliptic equations and the Krylov Theorem
[32] for uniformly parabolic fully nonlinear PDE, since the proofs of these deep results
would take considerable space.

The topics dealt in this notes are special samples of geometric nonlinear PDE. It is our
hope they can serve as an introduction to the general theory of geometric analysis.

The notes are organized as follows. The curvature measures are introduced through the
Steiner formula in differential geometric setting in section 1, where the Steiner formula and
the Minkowski identity are proved. As the geometric objects and the associated differential
equations are involved the elementary symmetric functions, some important properties of
these functions are collected in section 2 with proofs, except the theory of hyperbolic
polynomials of Garding which is put in the Appendix. Section 3 deals with the problem
of prescribing curvature measures. A k-curvature fully nonlinear elliptic equation is set
up there together with the a priori estimates of the solutions of the equation. Section 4 is
devoted to the proof of the isoperimetric inequalities for quermassintegrals of k-convex star
shaped domains, via parabolic approach. Again, the main part is the a priori estimates for
the solutions of the corresponding parabolic equation. The literature comments appear at
the end of the notes.

Research of the first author was supported in part by an NSERC Discovery Grant.
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1. The Steiner formula and Curvature measures

Suppose Ω is a domain in Rn+1, for each x ∈ Rn+1, denote p(Ω, x) to be the set of the
nearest points in Ω to x. Given any Borel set β ∈ B(Rn+1), ∀s > 0, consider

As(Ω, β) := {x ∈ Rn+1|0 < d(Ω, x) ≤ s and p(Ω, x) ∈ β}

which is the set of all points x ∈ Rn+1 for which the distance d(Ω, x) ≤ s and for which
the nearest point p(Ω, x) belongs to β. If ∂Ω is smooth and β is open, for s > 0 small,
one may write

As(Ω, β) = {X + tν(X) |X ∈ β ∩M, 0 ≤ t ≤ s, }
where ν(X) is the outer normal of M at X.

We assume the boundary of Ω, M = ∂Ω, is C2 (or smoother). Let

κ(X) = (κ1(X), · · · , κn(X))

be the principal curvatures of X ∈M . To calculate the volume of As(Ω, β), pick any local
orthonormal frame of M , so that the second fundamental form (Wij(X)) of M at X is
diagonal. As (X + tν(X))i = (1 + tWii)Xi, and ν(X) is orthogonal to Xi, the volume
element at X + tν(X) is simply

dV = (
n∏
i=1

(1 + tWii))dµMdt =
n∑
i=0

σi(κ(X))tidµMdt,

where σi(κ) is the i-th elementary symmetric function of κ (see Definition (2.1)), and
where dµg is the volume element with respect to the induced metric g of M in Rn+1.
Therefore,

V (As(Ω, β)) =

∫ s

0

∫
β∩M

n∑
i=0

σi(κ(X))tidµMdt =
n∑
i=0

(

∫
β∩M

σi(κ(X))dµM )
si+1

i+ 1
.

Set

(1.1) Cm(Ω) = σn−m(κ)dµM , m = 0, 1, · · · , n.

We have proved the Steiner formula,

(1.2) V (As(Ω, β)) =

n∑
m=0

sn+1−m

n+ 1−m
Cm(Ω, β),

for β ∈ B(Rn+1) and s > 0.
In the context of classical convex geometry, the coefficients C0(Ω, ·), · · · , Cn(Ω, ·) in (1.2)

are called curvature measures of the convex body Ω. Formula (1.1) indicates that Cm(Ω, ·)
is well defined if ∂Ω is C2 without convexity assumption. In general, Cm(Ω) is a signed
measure. The positivity of Cm(Ω) for 0 ≤ m ≤ k is related to the notion of k-convexity
(Definition 3.1).

The global quantities

(1.3) Vn−m(Ω) = Cn,k

∫
M
σm(κ)dµM , m = 0, 1, · · · , n,
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where Cn,k = σk(1,··· ,1)
σk−1(1,··· ,1) , are called the quermassintegrals of Ω in convex geometry, if Ω

is convex. Again, we note that these quantities are well defined for general C2 domain Ω
without convexity condition.

It is clear that the curvature measures capture the geometry of M .

(1) What are the relations between quermassintegrals?
(2) How much information can we extract from the curvature measures?

These are the main questions we want to deal with in this notes. The first question
has satisfactory answer when Ω is convex, which corresponds to the classical Alexandrov-
Fenchel inequalities. Generalization of these inequalities to non-convex domains has gained
much interest recently, but remains largely unsettled. We will focus on a class of non-
convex star-shaped domains, where a clean result can be established. The second question
can be answered in terms of the Minkowski type problem, the problem of prescribing
curvature measures. It turns out there is an affirmative answer if we restrict ourselves to
the class of non-convex star-shaped domains.

There is a different expression for Vn−m(Ω) involving the support function u(X) =
〈X, ν(X)〉. The Minkowski identity states that ∀k ≥ 1,

(1.4)

∫
M
uσk(κ)dµM = Cn,k

∫
M
σk−1(κ)dµM ,

By the Divergent theorem,

Vn+1(Ω) =
1

n+ 1

∫
M
udµM .

From (1.4), we may define

(1.5) V(n+1)−k(Ω) =

∫
M
uσk(κ)dµM ,

for k = 0, · · · , n. Vn+1(Ω) is multiple of the volume of Ω by a dimensional constant,
Vn(Ω) is a multiple of the surface area of ∂Ω by another dimensional constant. In convex
geometry, u is called the support function of Ω.

The Minkowski identity (1.4) can be verified using the fact that σk has divergent free
structure (Lemma 2.1). Again, pick a local orthonormal frame on M , let h = (Wij) be
the second fundamental from and let g−1h = (hij) be the Weingarten tensor. We compute

(
|X|2

2
)ij = XiXj +Xij = δij − 〈X, ν(X)〉Wij = δij − uWij .

Contracting with σijk = ∂σk
∂hij

(g−1h) and integrating over M∫
M
σijk (
|X|2

2
)ij =

∫
M

(
∑
i

σijk δij − uσ
ij
k Wij).

As

σijk δij = (n− k + 1)σk−1, σijk Wij = kσk,



4 PENGFEI GUAN

and by (2.3), we get

0 = (n− k + 1)

∫
M
σk−1(g−1h)− k

∫
M
uσk(g

−1h).

This is exactly the identity (1.4).

The Minkowski addition of two sets Ω1,Ω2 ⊂ Rn+1 is defined as

Ω1 + Ω2 = {z = x+ y|x ∈ Ω1, y ∈ Ω2}.

The Minkowski addition is one of the basic operation in convex geometry. For general
domain Ω, when 0 ≤ s small, one may define

Ωs = {z = x+ y|x ∈ Ω, y ∈ Bs},

where Bs is the ball centered at the origin with radius s.

Ωs = {X + tν(X) |X ∈ Ω, 0 ≤ t ≤ s.}

If M = ∂Ω is smooth, the boundary ∂Ωs = Ms is also smooth and can be written as

Ms = {X + sν(X) |X ∈M.}

Moreover, the normal of Ms at Xs = X+sν(X) is the same as ν(X) for each X ∈M . The
support function of Ωs is us(X

s) = u(X) + s. For any local orthonormal frame e1, · · · , en
on M such that h = (Wij) is diagonal at the point, one may calculate the induced metric
gs on M s

gs =

n∑
i=1

(1 + hii)
2ei ⊗ ei,

and the area element of M s

dµMs = det(I + sg−1h)dµM .

By the Minkowski identity, the volume of Ωs can be computed as

V (Ωs) =
1

n+ 1

∫
M
us det(I + sg−1h)dµM

=
1

n+ 1

∫
M

n∑
i=0

(u+ s)siσi(g
−1h)dµM

=
1

n+ 1

∫
M

n∑
i=0

(usiσi(g
−1h) + si+1)σi(g

−1h)dµM

=
1

n+ 1

n∑
i=0

n+ 1

i+ 1
si+1

∫
M
σi(g

−1h)dµM +
1

n+ 1

∫
M
udµM

=
n+1∑
i=0

cin+1t
n+1−iVi(Ω),
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2. Some properties of elementary symmetric functions

The elementary symmetric functions appear naturally in the geometric quantities in the
previous section. In order to carry on analysis, we need to understand properties of the
elementary symmetric functions.

For 1 ≤ k ≤ n, and λ = (λ1, ..., λn) ∈ Rn, the k-th elementary symmetric function is
defined as

σk(λ) =
∑

λi1 ...λik ,(2.1)

where the sum is taken over all strictly increasing sequences i1, ..., ik of the indices from
the set {1, ..., n}. The definition can be extended to symmetric matrices. Denote λ(W ) =
(λ1(W ), ..., λn(W )) to be the eigenvalues of the symmetric matrix W , set

σk(W ) = σk(λ(W )).

It is convenient to set

σ0(W ) = 1, σk(W ) = 0, for k > n.

It follows directly from the definition that, for any n × n symmetric matrix W , and
∀t ∈ R,

(2.2) σn(I + tW ) = det(I + tW ) =
n∑
i=0

σi(W )ti.

Conversely, (2.2) can also be used to define σk(W ), ∀k = 0, · · · , n.

An important property of σk is the divergent free structure. Suppose M is a general
Riemannian manifold of dimension n, W is a symmetric tensor on M . We call W is
Codazzi if DW = 0. This property is equivalent to say that, for any local orthonormal
frame (e1, · · · , en) on M , write W = (wij), then wij,l = ∇elwij is symmetric with respect
to i, j, l. Some classical examples are

(1) second fundamental form h of any hypersurface in in space form N(c) with constant
sectional curvature c, this follows from the Codazzi equation;

(2) W = ∇2
v + cv, ∀v ∈ C3(N(c)).

Throughout the rest of the notes, we will use Einstein summation convention, unless it
is otherwise indicated.

Below is the statement of divergent free structure of σk.

Lemma 2.1. Suppose e1, · · · , en is a local orthonormal frame on M , W = (wij) is a
Codazzi tensor on M , then for each i,

(2.3)
n∑
j=1

(
∂σk
∂wij

)j(W ) = 0.

Proof. We first verify (2.3) for k = n. Denote Cil to be the cofactor of W , i.e.,

∂σn
∂wil

= Cil, Cilwlj = det(W )δij .
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Differentiate above identity in em direction and contract with Cjm,

CjmCilmwlj + Cilwlj,mC
jm = δij(det(W ))mC

jm.

If det(W ) 6= 0 at the point, we get

Cimm = CpqCimwpq,m − CilCjmwlj,m = CpqCimwpq,m − CilCjmwjm,l = 0.

If det(W ) = 0 at the point, we may approximate W by Codazzi tensor W̃ = W + tg where

g is the metric tensor on M such that det(W̃ ) 6= 0 for t small. (2.3) is verified for the case
k = n.

Observe that, for t ∈ R,

σn(W̃ ) =
n∑

m=0

tmσn−m(W ).

Apply (2.3) for the case k = n,

n∑
m=0

tm
∑
j

(
∂σn−m
∂wij

(W ))j = 0.

Since it is true for all t ∈ R, we must have ∀m,∑
j

(
∂σn−m
∂wij

(W ))j = 0.

�

The following gives explicit algebraic formulas for σk(W ).

Proposition 2.2. If W = (Wij) is an n × n symmetric matrix, let F (W ) = σk(W ) for
1 ≤ k ≤ n. Then the following relations hold.

σk(W ) =
1

k!

n∑
i1,...,ik=1
j1,...,jk=1

δ(i1, ..., ik; j1, ..., jk)Wi1j1 · · ·Wikjk ,

Fαβ :=
∂F

∂Wαβ
(W )

=
1

(k − 1)!

n∑
i1,...,ik−1=1
j1,...,jk−1=1

δ(α, i1, ..., ik−1;β, j1, ..., jk−1)Wi1j1 · · ·Wik−1jk−1

F ij,rs :=
∂2F

∂Wij∂Wrs
(W )

=
1

(k − 2)!

n∑
i1,...,ik−2=1
j1,...,jk−2=1

δ(i, r, i1, ..., ik−2; j, s, j1, ..., jk−2)Wi1j1 · · ·Wik−2jk−2
,
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where the Kronecker symbol δ(I; J) for indices I = (i1, ..., im) and J = (j1, ..., jm) is
defined as

δ(I; J) =


1, if I is an even permutation of J ;

−1, if I is an odd permutation of J ;

0, otherwise.∑
i,j,m

σijk (W )WimWmj = σ1(W )σk(W )− (k + 1)σk+1(W ).

Proof. The first identity follows from (2.2) by equalized the coefficient in front of tk. The
second and third identities follow from the first identity. Notice that all the identity are
invariant under orthornormal transformation. In particular, we may assume W is diagonal
in the last identity. For λ ∈ Rn, for any fixed i ∈ {1, · · · , n}, denote (λ|i) ∈ Rn with i-th
component of λ replaced by 0. Differentiation of (2.1) yields

(2.4)
∂σk(λ)

∂λi
= σk−1(λ|i).

Again it can read off from (2.1),

(2.5) σk(λ) = σk(λ|i) + λiσk−1(λ|i).

Thus,

λiσk(λ|i) = λi(σk(λ)− λiσk−1(λ|i) = λiσk(λ)− λ2
iσk−1(λ|i).

Using homogeneity of σk+1, the last identity in the proposition follows from the above by
summing up over i. �

Definition 2.3. For 1 ≤ k ≤ n, let Γk is a cone in Rn determined by

Γk = {λ ∈ Rn : σ1(λ) > 0, ..., σk(λ) > 0}.

A n× n symmetric matrix W is called belong to Γk is λ(W ) ∈ Γk.

Let W 1, · · · ,Wn be n × n symmetric matrices, define σn(W 1, ...,Wn) to be the co-
efficient in front of the factor t1 · · · tn of the polynomial det(t1W

1 + · · · + tnW
n). It is

called the mixed determinant of W 1, · · · ,Wn. In general, for 1 ≤ k ≤ n, we define
σk(W

1, ...,W k) =
(
n
k

)
σn(W 1, ...,W k, I, · · · , I), where the identity matrix I appears (n−k)

times. σk(W
1, ...,W k) is called the complete polarization of the symmetric function σk.

The following Garding inequality plays important role in geometric PDE.

Lemma 2.4. Γk is a convex cone. ∀W i ∈ Γk, i = 1, ..., k,

(2.6) σ2
k(W

1,W 2,W 3, · · · ,W k) ≥ σk(W 1,W 1,W 3, · · · ,W k)σk(W
2,W 2,W 3, · · · ,W k),

equality hold if and only if W 1 and W 2 are proportional. And

σk(W
1, · · · ,W k) ≥ σ

1
k
k (W 1, · · · ,W 1) · · ·σ

1
k
k (W k, · · · ,W k),(2.7)

the equality holds if and only if W i,W j are pairwise proportional.
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Lemma 2.4 is a special case of Garding’s theory of hyperbolic polynomials, which can
be found in Appendix. The convexity of Γk follows from Proposition 5.2, (2.6) and (2.7)
follow from Corollary 5.4 and Proposition 5.6 in Appendix.

Inequality (2.6) yields the Newton-MacLaurin inequality.

Lemma 2.5. For W ∈ Γk,

(2.8) (n− k + 1)(k + 1)σk−1(W )σk+1(W ) ≤ k(n− k)σ2
k(W ),

and

(2.9) σk+1(W ) ≤ cn,kσ
k+1
k

k (W ),

where cn,k =
σk+1(I)

σ

k+1
k

k
(I). The equality holds if and only if W = cI for some c > 0.

Proof. If σk+1(W ) ≤ 0, as W ∈ Γk, (2.8) is trivial. We may assume σk+1(W ) > 0, so
W ∈ Γk+1. Replace k by k + 1 in (2.6), and set W 1 = I, W 2 = · · · = W k+1 = W ∈ Γk,
(2.8) follows from (2.6). The similar argument yields (2.9) using (2.7). �

We remark that the Newton-MacLaurin inequality is valid for general symmetric matrix
W (e.g., [29]).

The following lemma establish connection of σk with the ellipticity of Hessian and
curvature equations.

Lemma 2.6. Let F = σk, then the matrix ( ∂F
∂Wij

) is positive definite for W ∈ Γk. where

Wij are the entries of W . If W ∈ Γk, then (W |i) ∈ Γk−1, ∀k = 0, 1, · · · , n, i = 1, 2, · · · , n,
where (W |i) is the matrix with i-th column and i-th row deleted. Furthermore, if W ∈ Γk

and ‖W‖ =
√∑

i,j w
2
ij ≤ R for some R > 0, then there is cn,k > 0 depending only on n, k,

such that

(2.10)
σk(W )

R(1 + cn,kσ
1

k−1

k−1 (I))
I ≤ (

∂F

∂Wij
) ≤ Rk−1σk−1(I)I.

Proof. Fix W ∈ Γk, for any positive definite matrix A = (aij), by Lemma 2.4,

0 < σk(W, · · · ,W,A) =
∑
ij

∂F

∂wij
(W )aij .

This implies the positivity of ( ∂F
∂Wij

). By Proposition 2.2 and the positivity of ( ∂F
∂Wij

), for

each l ≤ k, W ∈ Γk, and for any i ∈ {1, · · · , n},

0 <
∂σl
∂Wii

= σl−1(W |i).

This yields (W |i) ∈ Γk−1.
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To show (2.10), we only need to control ∂σl
∂λi

= σk−1(λ|i), where λi, i = 1, · · · , n are the

eigenvalues of W . By the assumption, and (2.9)

s ≤ σk(W ) = σk(λ|i) + λiσk−1(λ|i)

≤ σk−1(λ|i)(λi + cn,kσ
1

k−1

k−1 (λ|i))

≤ R(1 + cn,kσ
1

k−1

k−1 (I))σk−1(λ|i).

this gives the lower bound in (2.10). The upper bound for σk−1(λ|i) is trivial. �

We now switch to the quotient of elementary symmetric functions. Some of the concave
properties of them will be used in crucial way in the a priori estimates in the rest of the
sections.

Lemma 2.7. For 0 ≤ l < k ≤ n, let F = (σkσl )
1
k−l , then ( ∂F

∂wij
) is positive definite for

W = (wij) ∈ Γk. If l = k − 1, if W ∈ Γk and ‖W‖ =
√∑

i,j w
2
ij ≤ R for some R > 0,

then there is cn,k > 0 depending only on n, k, such that

(2.11)
F (W )

R(1 + cn,kσ
1

k−1

k−1 (I))
I ≤ (

∂F

∂wij
) ≤ (n− k + 1)I.

Moreover, the function F is concave in Γk−1.

Proof. To simplify notation, define

Qm =
σm
σm−1

.

For any l < k,

(2.12)
σk
σl

=
k−l∏
j=1

Ql+j .

As Ql+j > 0 for j = 1, · · · , k − l, for the first statement in lemma, we only need to check

the positivity of (∂Qm+1(W )
∂wij

) for W = (wij) ∈ Γk and for m = l, · · · , k − 1. By product

rule,

∂Qm+1(W )

∂wij
=
σm(W )∂σm+1(W )

∂wij
− σm+1(W )∂σm(W )

∂wij

σ2
m(W )

.

By Proposition 2.2, the positivity of (
∂σj(W )
∂wij

) is invariant under orthonormal transforma-

tions, we only need to check the positivity of ∂Qm+1(λ)
∂λi

for λ ∈ Γk, i ∈ {1, · · · , n} and
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m = l, · · · , k − 1. Again,

∂Qm+1(λ)

∂λi
=

σm(λ)∂σm+1(λ)
∂λi

− σm+1(λ)∂σm(λ)
∂λi

σ2
m(λ)

(2.13)

=
σm(λ)σm(λ|i)− σm+1(λ)σm−1(λ|i)

σ2
m(λ)

=
σm(λ|i)σm(λ|i)− σm+1(λ|i)σm−1(λ|i)

σ2
m(λ)

≥ n

(n−m)(m+ 1)

σ2
m(λ|i)
σ2
m(λ)

> 0,

the Newton-MacLaurine inequality (2.8) is used in the last step as (λ|i) ∈ Γk−1 for each
i. In particular, if m = k − 1 and W ∈ Γk, for each i,

0 <
∂Qk(λ)

∂λi
≤
∑
i

∂Qk(λ)

∂λi

≤
∑
i

σk−1(λ|i)
σk−1(λ)

= n− k + 1.

This provides the upper bound in (2.11). By (2.9)

σk(W )

σk−1(W )
≤ cn,k−1σ

1
k
k (W ).

For each i = 1, · · · , n,

σk−1(λ|i)
σk−1(λ)

=
σk(λ)

σk−1(λ)

σk−1(λ|i)
σk(λ)

.

Now the lower bound in (2.11) follows from (2.13) and (2.10).
Notice that if f1 > 0 and f2 > 0 are two concave function, for any 1 ≥ α ≥ 0,

f = fα1 f
1−α
2 is also concave. Hence, we only need to check the concavity of σm+1

σm
in Γm+1.

In fact, we show σm+1

σm
in Γm.

m = 0 is trivial. For m = 1, there is a useful explicit formula. ∀λ, λ± ξ ∈ Γ1, we have
algebraic identity

2Q2(λ)−Q2(λ+ ξ)−Q2(λ− ξ) =
(
∑

i(ξiσ1(λ)− λiσ1(ξ)))2

σ1(λ)σ1(λ+ ξ)σ1(λ− ξ)
.

This yields,

∂2Q2

∂2ξ
= −

(
∑

i(ξiσ1(λ)− λiσ1(ξ)))2

σ3
1(λ)

.

This gives the concavity of σ2
σ1

on Γ1.
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For m > 1, we use induction. For λ ∈ Γm, for each i ∈ {1, · · · , n} fixed, by (2.5) and
Corollary 2.6,

λi +Qm(λ|i) =
σm+1(λ)

σm(λ|i)
> 0.

Apply the last identity in Proposition 2.2,

(m+ 1)Qm(λ) =
∑
i

(λi − λ2
i

σm−1(λ|i)
σm(λ)

)

=
∑
i

(λi − λ2
i

σm−1(λ|i)
σm(λ|i) + λiσm−1(λ|i))

)

=
∑
i

(λi −
λ2
i

λi +Qm(λ|i)
).

For any ξ ∈ Rn with |ξ| = 1, set λε± = λ ± εξ. Take ε > 0 small enough such that
λε± ∈ Γm, using the above identity for λ, λε± , one compute

(m+ 1)(2Qm+1(λ)−Qm+1(λε+)−Qm+1(λε−))

=
∑
i

( (λi + εξi)
2

Qm(λε+ |i) + λi + εξi
+

(λi − εξi)2

Qm(λε− |i) + λi − εξi

− (2λi)
2

Qm(λε+ |i) +Qm(λε− |i) + 2λi

)
+
∑
i

( (2λi)
2

Qm(λε+ |i) +Qm(λε− |i) + 2λi
− 2λ2

i

λi +Qm(λ|i)
)

=
∑
i

((λi + εξi)Qm(λε−)− (λi − εξi)Qm(λε+))2

(Qm(λε+) + λi + εξi)(Qm(λε−) + λi − εξi)(Qm(λε+) +Qm(λε−) + ελi)

−2
∑
i

λ2
i

Qm(λε+ |i) +Qm(λε− |i)− 2Qm(λ)

(Qm(λε+ |i) +Qm(λε− |i) + 2λi)(λi +Qm(λ|i))

Thus,

−∂
2Qm+1

∂2ξ
= lim

ε→0

2Qm+1(λ)−Qm+1(λε+)−Qm+1(λε−)

ε2

≥ lim
ε→0
−2
∑
i

λ2
i

Qm(λε+ |i) +Qm(λε− |i)− 2Qm(λ)

ε2(Qm(λε+ |i) +Qm(λε− |i) + 2λi)(λi +Qm(λ|i)

= −
∑
i

λ2
i (
∂2Qm
∂ξ2

)(λ|i)
(m+ 1)(Qm(λ|i) + λi)2

.

As (λ|i) ∈ Γm−1, by induction hypothesis, ∂2Qm
∂ξ2

(λ|i) ≤ 0. �

The following lemma will play key role for the problem of prescribing curvature mea-
sures.
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Lemma 2.8. Let α = 1
k−1 , if W ∈ Γk is a symmetric tensor on a Riemannian manifold

M . For any local orthornormal frame {e1, · · · , en}, denote Wij,s = ∇esWij. Then

(2.14) (σk)
ij,lmWij,sWlm,s ≤ −σk

[
(σk)s
σk
− (σ1)s

σ1

][
(α− 1)

(σk)s
σk
− (α+ 1)

(σ1)s
σ1

]
.

Proof. By the concavity of

(
σk
σ1

) 1
k−1

(W ), we have

(2.15) 0 ≥ ∂2

∂Wij∂Wlm

((σk
σ1

) 1
k−1 )

Wij,sWlm,s.

Denote α = 1
k−1 . Direct computations yield,

(2.16)

0 ≥ ∂2

∂Wij∂Wlm

(
σk
σ1

)α
·Wij,sWlm,s

= α

(
σk
σ1

)α[
(σk)ij,lm

σk
+ (α−1)(σk)ij(σk)lm

σ2
k

−2α(σk)ij(σ1)lm

σkσ1
+ (α+1)(σ1)ij(σ1)lm

σ2
1

]
Wij,sWlm,s

Equivalently,

(2.17)

(σk)ij,lmWij,sWlm,s

σk
≤ −

[
(α−1)(σk)ij(σk)lm

σ2
k

− 2α(σk)ij(σ1)lm

σkσ1

+ (α+1)(σ1)ij(σ1)lm

σ2
1

]
Wij,sWlm,s

≤ −
[

(σk)s
σk
− (σ1)s

σ1

][
(α− 1) (σk)s

σk
− (α+ 1) (σ1)s

σ1

]
�

Note in Lemma 2.8, one may replace σk by any positive function F with the property
that ( Fσ1 )α is concave for some α > 0. The following is a corollary of Lemma 2.8.

Corollary 2.9. If (σ1)s
σ1

= (σk)s
σk
− r for some r,

(2.18) (σk)
ij,lmWij;sWij;s ≤ max

{
2r(σk)s −

k

k − 1
r2σk, 0

}
.

3. Prescribing curvature measures

Assume Ω ⊂ Rn+1 is a bounded star-shaped domain with respect to the origin. We may
parametrize M = ∂Ω over Sn by positive radial function ρ Due to the parametrization,
the prescribe curvature measure problem for this class of domains can be reduced to a
curvature type nonlinear partial differential equation of ρ on Sn. We want to establish the
existence theorems of prescribing general (n−k)-th curvature measure problem with k > 0
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on bounded C2 star-shaped domains. When k = n, the prescribing curvature measure C0

is the Alexandrov problem corresponding to a Monge-Ampère type equation on Sn, which
won’t be treated here.

In order to make the problem in proper PDE setting, we need to impose some geometric
condition on ∂Ω.

Definition 3.1. A domain Ω is called k-convex if its principal curvature vector κ(x) =
(κ1, · · · , κn) ∈ Γk at every point x ∈ ∂Ω.

For each star-shaped domain Ω with M = ∂Ω, express M as a radial graph of Sn,

RM : Sn −→M
z 7−→ ρ(z)z.

From (1.1)the (n− k)-th curvature measure on each Borel set β in Sn can be defined as

Ck(M,β) :=

∫
RM (β)

σk(κ)dµg.

The precise statement of the problem for prescribing (n − k)-th curvature measure is:
given a positive function f ∈ C2(Sn), find a closed hypersurface M as a radial graph over
Sn, such that Cn−k(M,β) =

∫
β fdµ for every Borel set β in Sn, where dµ is the standard

volume element on Sn.

For the C2 graph M on Sn, denote the induced metric to be g and the density function
is
√

det g. Then

(3.1) Cn−k(M,β) =

∫
RM (β)

σkdµg =

∫
β
σk
√

det gdSn.

We now write down the local expressions of the induced metric, support function u,
second fundamental form and Weingarten curvatures in terms of positive function ρ and its
derivatives ∇ρ,∇2ρ. Let {e1, · · · , en} be a local orthonormal frame on Sn, and denote eij
the standard spherical metric with respect to this frame (which is the identity matrix). We
use∇ as the gradient operator with respect to standard metric on Sn. To simplify notation,
for any function v on Sn, we will write ∇eiv = vi as covariant derivative with respect to
ei on Sn in this subsection, if there is no confusion. From the radial parametrization
X(x) = ρ(x)x,

Xi = ρix+ ρei,

Xij = ρijx+ ρiej + ρjei + ρ(ei)j = ρijx+ ρiej + ρjei − ρeijx.
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The following identities can be read off from the above.

(3.2)

ν = ρx−∇ρ√
ρ2+|ρ|2

u = ρ2√
ρ2+|∇ρ|2

gij = ρ2δij + ρiρj
gij = 1

ρ2
(δij − ρiρj

ρ2+|∇ρ|2 )

hij = (
√
ρ2 + |∇ρ|2)−1(−ρ∇i∇jρ+ 2ρiρj + ρ2eij)

hij = 1

ρ2
√
ρ2+|∇ρ|2

(eik − ρiρk
ρ2+|∇ρ|2 )(−ρ∇k∇jρ+ 2ρkρj + ρ2ekj).

From (3.2), √
det g = ρn−1

√
ρ2 + |∇ρ|2.

The prescribing (n − k)-th curvature measure problem can be deduced to the following
curvature equation on Sn:

(3.3) σk(κ1, · · · , κn) = σk(h
i
j) =

f

ρn−1

√
ρ2 + |∇ρ|2

,

where f > 0 is the given function on Sn. A solution of (3.3) is called admissible if κ(X) ∈ Γk
at each point X ∈M . We note that any positive C2 function ρ on Sn satisfying equation
(3.3) is automatically an admissible solution. Since the principal curvatures at a maximum
point of ρ are positive, solution is admissible at this point. As Γk and Sn are connected,
and κ(X) varies continuously, the fact of σk(κ(X)) > 0 implies solution is admissible at
each point of M .

The following is the statement of solvability of the problem of the prescribing curvature
measures.

Theorem 3.2. Let n ≥ 2 and 1 ≤ k ≤ n − 1. Suppose f ∈ C2(Sn) and f > 0. Then
there exists a unique k-convex star-shaped hypersurface M ∈ C3,α, ∀α ∈ (0, 1) such that it
satisfies (3.3). Moreover, there is a constant C depending only on k, n, ‖f‖C1,1 , ‖1/f‖C0 ,
and α such that,

(3.4) ‖ρ‖C3,α ≤ C.

The rest of the section is devoted to the proof of Theorem 3.2. The main task will be the
a priori estimates for solutions of equation (3.3). We will use the radial parametrization
on Sn for the estimates up to C1. Then we will work directly on M for the curvature
estimates, which is equivalent to C2 estimates.

It will be convenient to introduce a new variable γ = log ρ. Set

ω :=

√
1 + |∇γ|2.
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The unit outward normal and support function can be expressed as ν = 1
ω (1,−γ1, · · · ,−γn)

and u = eγ

ω respectively. Moreover,

(3.5)

gij = e2γ(δij + γiγj),
gij = e−2γ(eij − γiγj

ω2 )

hij = eγ

ω (−γij + γiγj + eij)

hij = e−γ

ω (eik − γiγk
ω2 )(−γkj + γkγj + ekj).

Notice that the Weingarten tensor in (3.5) is in general not symmetric with respect local
lo orthonormal frames (e1, · · · , en) on Sn, even though it is symmetric with respect to
local orthonormal frames on M . We observe that the symmetric matrix (eij − γiγj

ω2 ) has
an obvious square root S. That is,

(3.6) S = (Sij) = (eij −
γiγj

ω(ω + 1)
), (eij − γiγj

ω2
) = S2.

S can be used to symmetrize the Weingarten tensor. The eigenvalues of (hij) is the same

as eigenvalues of e−γ

ω B, with B defined as

B = : (bij) = S(−γlm + γlγm + elm)S

= (−γij + δij +

∑
l(γiγlj + γjγil)γl
ω(ω + 1)

−
γiγj

∑
l,m γlγlmγm

ω2(1 + ω)2
).(3.7)

Curvature equation (3.3) can be rewritten as

(3.8)
e(n−k)γ

ωk−1
σk(B) = f.

As B is a function in ∇2
γ,∇γ only, it is independent of γ. Set

(3.9) F̃ (∇2
γ,∇γ) = −σk(B).

Denote σijk (B) = ∂σk
∂bij

, we compute

(F̃ ij) = (
∂F̃

∂γij
) = S(σijk (B))S.(3.10)

Since S in (3.6) is positive definite, we have ( ∂F̃∂γij ) > 0.

3.1. Uniqueness and C1-estimates.

Lemma 3.3. Let 1 ≤ k < n. Let L denote the linearized operator at a solution ρ of (3.3),
if v satisfies L(v) = 0 on Sn, then v ≡ 0 on Sn. Moreover, suppose ρ, ρ̃ are two solutions
of equation (3.3) and λ(ρi) ∈ Γk, for i = 1, 2. Then ρ1 ≡ ρ2.

Proof. (3.8) can be put in the form of

(3.11)
e(n−k)γ

ωk−1
F̃ (∇2

γ,∇γ) = −f.
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The linearized operator at γ is

L(v) =
e(n−k)γ

ωk−1
F̃ ijvij +

∑
l

blvl − (n− k)fv,

for some function bl, l = 1, · · · , n. The first statement in lemma follows immediately from
the maximum principle.

Suppose γ = log ρ and γ̃ = log ρ̃ are two solutions of equation (3.8), denote ω̃ =√
1 + |∇γ̃|2 and B̃ to be the corresponding tensor B in (3.7) with γ replaced by γ̃. For

t ∈ [0, 1], set

γt = tγ + (1− t)γ̃, ωt =

√
1 + |∇γt|2, Bt = tB + (1− t)B̃.

Set v = γ − γ̃, as Bt ∈ Γk,

0 =
e(n−k)γ

ωk−1
F (B)− e(n−k)γ̃

ω̃k−1
F (B̃)

=

∫ 1

0

d

dt
(
e(n−k)γt

ωk−1
t

F (Bt))dt

=

∫ 1

0
(n− k)(

e(n−k)γt

ωk−1
t

F (Bt))dt+

∫ 1

0
(
e(n−k)γt

ωk−1
t

F ij(Bt))dt(bij − b̃ij) +mod(∇v).

Write S = (Sij), and observe that S only involves ∇γ,∇2
γ (and so is S̃), by the Mean

Value Theorem,

B − B̃ = −S(∇2
v)S +mod(∇v),

and

0 = (

∫ 1

0
(n− k)(

e(n−k)γt

ωk−1
t

F̃ (Bt))dt)v −
∫ 1

0
(
e(n−k)γt

ωk−1
t

F ij(Bt))dt)Sαi S
β
j vαβ +mod(∇v).

Since (
∫ 1

0 ( e
(n−k)γt

ωk−1
t

F ij(Bt))dt)SiαSβj) > 0,
∫ 1

0 (n − k)( e
(n−k)γt

ωk−1
t

F̃ (Bt))dt > 0, v satisfies the

following elliptic equation,

aij(x)vij(x) + bk(x)vk(x) + c(x)v(x) = 0, ∀x ∈ Sn,

with c(x) < 0 for all x ∈ Sn. The maximum principle yields v ≡ 0. That is ρ = ρ̃. �

It is useful to write down some differential identities for general C1 symmetric function
F . F (W ) is symmetric if it is invariant under orthonormal transformation. With B is

defined in (3.7), set F̃ (∇2
γ,∇γ) = −F (B). Define F ij = ∂F

∂bij
, F̃ ij = ∂F̃

∂γij
. It follows from

(3.7) that

(F̃ ij) = S(F ij)S.(3.12)
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Lemma 3.4. For any C1 symmetric function F (B), set φ = |∇γ|2
2 , then there exist cm

depending on (∇2
γ,∇γ, F ), such that

F̃ ijφij =
∑
m

cmφm −
∑
l

γl(F (B))l + F ij(δij |∇γ|2 − γjγi + δijγ
2
ii).(3.13)

Proof. By (3.7),

φij =
∑
l

(γlγlij + γliγlj)

=
∑
l

(
γl(γlij + δliγj − γjδil) + γliγlj

)
=

∑
l

(
γl(γijl + δijγl − γjδil) + γliγlj

)
=

∑
l

γl(−bijl + (
γiφj + γjφi
ω(ω + 1)

−
γiγj

∑
m γmφm

ω2(1 + ω)2
)l)

+δij |∇γ|2 − γjγi + δijγ
2
ii

=
∑
l

γl(−bijl + (
γiφlj + γjφli
ω(ω + 1)

−
γiγj

∑
m γmφml

ω2(1 + ω)2
))

+δij |∇γ|2 − γjγi + δijγ
2
ii + cmijφm,

where we used the fact that tensor Aij := γij+γeij is Codazzi for any function γ ∈ C3(Sn).
We rewrite above identity as

φij =
∑
l

(
γiγlφlj + γlγjφli

ω(ω + 1)
−
γiγj

∑
m,l γlγmφml

ω2(1 + ω)2
)cmijφm

+δij |∇γ|2 − γjγi + δijγ
2
ii −

∑
l

γlbijl,

or equivalently

S∇2
φS − (cmijφm) = |∇γ|2I − (γiγj) + (∇2

γ)2 − (
∑
l

γlbijl).

Set cm =
∑

ij F
ijcmij , contracting above identity with F ij , it follows from (3.12),

F̃ ijφij −
∑
m

cmφm = −
∑
l

F ij(B)γlbijl + F ij(δij |∇γ|2 − γjγi + δijγ
2
ii)

= −
∑
l

γl(F (B))l + F ij(δij |∇γ|2 − γjγi + δijγ
2
ii).

�

Proposition 3.5. If M satisfies (3.3), then(minSn f

Ckn

) 1
n−k ≤ min

Sn
|X| ≤ max

Sn
|X| ≤

(maxSn f

Ckn

) 1
n−k

.
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Moreover, there exits a constant C depending only on n, k, minSn f , |f |C1 such that

max
Sn
|∇ρ| ≤ C.

Proof. (γij) is semi-negative definite at maximum point of ρ and ∇γ = 0. By (3.8),

f =
e(n−k)γ

ωk−1
σk(B) = e(n−k)γσk(B) ≥ e(n−k)γ .

This yields an upper bound of γ. A lower bound of γ follows similarly, as (γij) is semi-
positive definite at any minimum point of ρ.

To obtain an upper bound for |∇ρ| is now equivalent to obtain an upper bound of

φ = |∇γ|2
2 . Suppose p ∈ Sn is a maximum point of φ. At p,

(3.14) ∇|∇γ|2 = 0, ∇ω = 0, B = (−γij + δij).

It follows from (3.13) with F (B) = σk(B), at p,

0 ≥
∑
ij

F ijφij

= −
∑
l

γl(σk(B))l +
∑
ij

σijk (δij |∇γ|2 − γiγj + δijγ
2
ii)

≥ −
∑
l

γl(e
−(n−k)γωk−1f)l

=
(
(n− k)|∇γ|2f −∇γ · ∇f

)
e(k−n)γωk−1

≥ c(|∇γ|2 − C|∇γ|)e(k−n)γωk−1,(3.15)

where c ≥ δ, C ≤ 1
δ are two positive constants with δ depending only on n, k, inf f, |∇f |.

The gradient estimate follows from (3.15). �

3.2. C2-estimates and the existence. We precede to prove C2 a priori estimates, this
is equivalent to obtain curvature estimate for M due to C1 estimates we have already
obtained. For this purpose, it is convenient to work directly on induced metric g on
M ⊂ Rn+1. For X ∈M , choose local orthonormal frame {e1, · · · , en} on M , and ν = en+1

is the unit outer normal of the hypersurface, such that {e1, · · · , en+1} of Rn+1 is a local
orthonormal frame in Rn+1. We use lower indices to denote covariant derivatives with
respect to the induced metric.

The second fundamental form is the symmetric (2, 0)-tensor given by the matrix {hij},
and we denote the Weingarten tensor {hji} = {gjlhli},
(3.16) hij = 〈∂iX, ∂jν〉.
We have the following identities,

(3.17)

Xij = −hijν (Gauss formula)

(ν)i = hjiXj (Weigarten equation)
hijk = hikj (Codazzi formula)
Rijkl = hikhjl − hilhjk (Gauss equation),
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where Rijkl is the (4, 0)-Riemannian curvature tensor. We also have

(3.18)
hijkl = hijlk + hmjRimlk + himRjmlk

= hklij + (hmjhil − hmlhij)hmk + (hmjhkl − hmlhkj)hmi.

Since {e1, · · · , en} is an orthonormal frame on M , gij = δij , hij = hij . The principal

curvatures (κ1, · · · , κn) are the eigenvalues of the second fundamental form with respect
to the metric which satisfy

det(hij − κgij) = 0.

The curvature equation (3.3) on Sn can also be equivalently expressed as a curvature
equation on M ,

(3.19) σk(κ1, · · · , κn)(X) =
u(X)

|X|n+1
f
( X
|X|
)
, ∀X ∈M.

Proposition 3.6. For 1 < k < n, let F ≡ σk = Φu and denote H ≡ σ1, then at a
maximum point of H

u ,

(3.20)
F ij
(
H
u

)
ij

= 1
u [Φssu+ 2Φsus]−

(
H
u

)
Φl〈X,Xl〉 − (k − 1)

(
H
u

)
Φ

+(k − 1)φ|A|2 − 1
uF

ij;mlhij;shml;s,

where A denotes the second fundamental form.

Proof. By definition, u = 〈X, ν〉. Compute the first and second order covariant derivatives,
we have

(3.21)
us = hsl〈X,Xl〉
uij = hij;l〈X,Xl〉+ hij − (h2)iju

Also since (hij) is Codazzi, by Ricci identity and Gauss equation,

(3.22)
hij;kl = hkl;ij + (hlkhim − hlmhik)hmj + (hljhim − hlmhij)hmk

F ijhij;st = Fst − F ij;mlhml;shij;t.

At any maximum point P ∈Mn of H
u ,
(
H
u

)
i
(P ) = 0. At P ,

(3.23)
F ij
(
H
u

)
ij

= F ij
[
Hij
u −

uj
u

(
H
u

)
i
− ui

u

(
H
u

)
j
−
(
H
u

)uij
u

]
= 1

uF
ijHij − 1

u

(
H
u

)
F ijuij .
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Apply formulas (3.21) and (3.22),

(3.24)

1
uF

ijHij = 1
uF

ijhss;ij
= 1

uF
ij
[
hij;ss + (hijhsm − hjmhsi)hms + (hjshsm − hjmhss)hmi

]
= 1

uF
ijhij;ss + kΦ|A|2 − 1

uF
ij(h2)ijH

= 1
uFss −

1
uF

ij;mlhij;shml;s + kΦ|A|2 −
(
H
u

)
F ij(h2)ij

= 1
u [Φssu+ 2Φsus + Φuss]− 1

uF
ij;mlhij;shml;s + kΦ|A|2

−
(
H
u

)
F ij(h2)ij

= 1
u [Φssu+ 2Φsus] + Φ

u

[
Hl〈X,Xl〉+H − |A|2u

]
− 1
uF

ij;mlhij;shml;s + kΦ|A|2 −
(
H
u

)
F ij(h2)ij

= 1
u [Φssu+ 2Φsus] + Φ

uHl〈X,Xl〉+
(
H
u

)
Φ

− 1
uF

ij;mlhij;shml;s + (k − 1)φ|A|2 −
(
H
u

)
F ij(h2)ij .

We also compute

(3.25)
− 1
u

(
H
u

)
F ijuij = − 1

u

(
H
u

)
F ij
[
hij;l〈X,Xl〉+ hij − (h2)iju

]
= − 1

u

(
H
u

)
Fl〈X,Xl〉 − kφ

(
H
u

)
+
(
H
u

)
F ij(h2)ij

= −Φ
u

(
H
u

)
ul〈X,Xl〉 −

(
H
u

)
Φl〈X,Xl〉 − kΦ

(
H
u

)
+
(
H
u

)
F ij(h2)ij ,

where (h2)ij = hikhkj .
Adding up (3.24) and (3.25), and using the critical point condition, we obtain

(3.26)

F ij
(
H
u

)
ij

= 1
u [Φssu+ 2Φsus] + φ

(
H
u

)
l
〈X,Xl〉 −

(
H
u

)
Φl〈X,Xl〉

−(k − 1)
(
H
u

)
Φ− 1

uF
ij;mlhij;shml;s + (k − 1)Φ|A|2

= 1
u [Φssu+ 2Φsus]−

(
H
u

)
Φl〈X,Xl〉 − (k − 1)

(
H
u

)
Φ

− 1
uF

ij;mlhij;shml;s + (k − 1)Φ|A|2,
(3.20) is verified. �

C2 estimates can be established with the help of Proposition 3.6 and Corollary 2.9.

Lemma 3.7. If M satisfies equation (3.19) for some 1 ≤ k ≤ n, then there exists a
constant C depending only on n, k, minSn f , |f |C1, and |f |C2, such that

max
M

σ1 ≤ C, |∇2ρ| ≤ C.(3.27)

Proof. We have already obtained the C0 and C1 estimates for ρ. For the case of k = 1,
equation (3.19) is a mean curvature type equation which is of divergent form of quasilinear
PDE. C2 estimates follows from the classical quasilinear elliptic PDE theory. We work on
2 ≤ k ≤ n− 1 cases. When k > 1, the estimation of the curvature bound is equivalent to
the estimation of mean curvature H (which yields C2 bound on ρ). To see this, suppose
mean curvature H ≤ C is bounded from above. Since κ ∈ Γk ⊂ Γ2, (κ|i) ∈ Γ1. Hence, for
each i,

C ≥ H = σ1(κ) = κi + σ1(κ|i) ≥ κi.
This give an upper bound of curvature. A lower bound follows from the fact σ1(κ) > 0
and κi ≤ C for each i.



CURVATURE MEASURES AND ISOPERIMETRIC TYPE INEQUALITIES 21

As u is bounded from below and above, we only need to get an upper bound ofHu .

Suppose P ∈M where H
u achieves its maximum, it follows from (3.20)

(3.28)

0 ≥ F ij
(
H
u

)
ij

= 1
u [Φssu+ 2φsus]−

(
H
u

)
Φl〈X,Xl〉 − (k − 1)

(
H
u

)
Φ

− 1
uF

ij;mlhij;shml;s + (k − 1)Φ|A|2.

Recall Φ(X) = |X|−(n+1)f( X
|X|) and with C0, C1 estimates of ρ = |X| , we have the

following estimates.

|Φi|(P ) ≤ C(n, k,minSn f, |f |C1)
|Φii|(P ) ≤ C(n, k,minSn f, |f |C1 , |f |C2)

(
1 + |A|(P )

)
On the other hand, |ui| = |hijρρj | ≤ c3|A|. By equation (3.19),

σ1

u
=
σ1φ

σk
.

At a maximum point P of the test function σ1
u , one has

(σ1)s
σ1

=
(σk)s
σk
− φs

φ
.

In Corollary 2.9, set r = φs
φ (P ), then

F ij;mlhij;shml;s ≤ 2r(uφ)s − k
k−1r

2uφ

≤ C1(n, k,minSn f, |f |C1)|A|+ C2(n, k,minSn f, |f |C1).

With the above estimates, (3.28) can be simplified as

(3.29) |A|2(P ) + c4|A|(P ) + c5 ≤ 0,

where c4 and c5 are constants depending only on n, k, minSn φ, |f |C1 , and |f |C2 . Hence
at P , |A|(P ) ≤ C. In turn

σ1(X) ≤ u(X)
σ1(P )

u(P )
≤ C, for any X ∈M .

This implies (3.27). �

We prove Theorem 3.2 using the method of continuity.

Proof. For any positive function f ∈ C2(Sn), for 0 ≤ t ≤ 1 and 1 ≤ k < n− 1, set

ft(x) = [1− t+ tf−
1
k (x)]−k.

Consider the following family of equations for 0 ≤ t ≤ 1:

(3.30) σ
1
k
k (κ1, · · · , κn)(x) = (ft(x)ρ1−n(ρ2 + |∇ρ|2)−1/2)

1
k , on Sn,

where n ≥ 2. We want to find admissible solutions in the class of star-shaped hypersur-
faces. Set

I = {t ∈ [0, 1] : such that (3.30) is solvable.}
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I is nonempty because ρ = [Ckn]−
1

n−2 is a solution for t = 0. By Lemma 3.5, Lemma
3.7, Lemma 2.6 and Lemma 2.7, equation (3.30) is unform elliptic and concave, apply the
Evans-Krylov theorem and the Schauder theorem, we have

‖ρ‖C3,α(Sn) ≤ C,

where C depends only on only on n, k, minSn f , maxSn f , |f |C1 , |f |C2 and α. The a priori
estimates guarantee that I is closed. The openness comes from Lemma 3.3 and the inverse
function theorem. This proves the existence part of the theorem. The uniqueness part of
the theorem follows from Lemma 3.3. �

4. Isoperimetric inequality for quermassintegrals on starshaped domains

In this section, we use a geometric flow to establish isoperimetric inequalities for quer-
massintegrals of k-convex starshaped domains in Rn+1.

Theorem 4.1. Suppose 1 ≤ n − 1, and suppose Ω is a k-convex starshaped domain in
Rn+1, then the following inequality holds,

(4.1) (V(n+1)−k(Ω))
1

n+1−k ≤ Cn,k(Vn−k(Ω))
1

n−k ,

where

Cn,k =
(V(n+1)−k(B))

1
n+1−k

(Vn−k(B))
1

n−k
,

B is the standard ball in Rn+1. The equality holds if and only if Ω is a ball.

We consider the following normalized evolution equation on hypersurface Mn in Rn+1.

(4.2) ∂tX = (
1

F (κ)
− ru)ν,

where F (·, t) and r(t) are to be determined, u =< X, ν > is the supporting function of
the hypersurface.

We derive the evolution equations of various geometric quantities for the following
general flow.

(4.3) ∂tX = fν.

Proposition 4.2. Under flow (4.3), the following evolution equations hold.

(4.4)

∂tgij = 2fhij
∂tν = −∇f

∂thij = −∇i∇jf + f(h2)ij
∂th

i
j = −∇i∇jf − f(h2)ij

∂tσk = −
∑

ij σ
ij
k (g−1h)fij − f

(
σ1(g−1h)σk(g

−1h)− (k + 1)σk+1(g−1h)
)
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Proof. Pick any local coordinate chart (x1, · · · , xn) of M , denote Xi = ∂X
∂xi

, i = 1, · · · , n,

as 〈Xi, ν〉 = 0,∀i, by Weingarten equation (3.17),

(gij)t = 〈Xi, Xj〉t
= 〈Xi,t, Xj〉+ 〈Xi, Xj,t〉
= 〈Xt,i, Xj〉+ 〈Xi, Xt,j〉
= 〈(fν)i, Xj〉+ 〈Xi, (fν)j〉
= f〈(ν)i, Xj〉+ f〈Xi, (ν)j〉

= f〈
∑
l

hliXl, Xj〉+ f〈Xi,
∑
l

hljXl〉

= f
∑
l

hliglj + f
∑
l

hljgli

= 2fhij

Since ν is a unit vector field, νt has only tangential component. We only need to
compute 〈νt, Xi〉. As 〈ν,Xi〉 ≡ 0,

〈νt, Xi〉 = −〈ν,Xi,t〉 = −〈ν, (fν)i〉 = −〈ν, (f)iν〉 = −fi.

This verifies the second identity in the proposition.
For the third identity, again using the fact ν is a unit vector field, by the second identity

we just proved and the Gauss formula in (3.17),

hij,t = −〈Xij , ν〉t
= −〈Xij,t, ν〉 − 〈Xij , νt〉
= −〈(fν)ij , ν〉+ 〈hijν,∇f〉
= −fij − f〈νij , ν〉
= −fij − f〈(hliXl)j , ν〉
= −fij − f〈(hli)jXlν〉 − f〈hliXlj , ν〉
= −fij + f〈hlihljν, ν〉
= −fij + fhlihlj .

The fourth identity follows from the first and third, and the fact gijt = −gilgmjglm,t. The
final identity in the proposition follows from the fourth identity and Proposition 2.2. �

Corollary 4.3. Under flow (4.2), where F is homogeneous of degree 1, then we have the
following evolution equations.
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(4.5)

∂tgij = 2(
1

F
− ru)hij

∂tν = −∇(
1

F
− ru)

∂thij = −∇i∇j(
1

F
− ru) + (

1

F
− ru)(h2)ij

∂th
i
j = −∇i∇j(

1

F
− ru)− (

1

F
− ru)(h2)ij

∂tσk = −
∑

ij σ
ij∇j∇i(

1

F
− ru)− (

1

F
− ru)σk−1;iλ

2
i

∂tF = −Ḟ ij∇i∇j(
1

F
− ru)− (

1

F
− ru)Ḟ ij(h2)ij

Furthermore, the following heat type evolution equation for Weingarten map hij is valid.

Proposition 4.4.

(4.6)
∂th

i
j =

1

F 2
Ḟ kl∇k∇lhij +

1

F 2
Ḟ (h2)hij +

1

F 2
F̈ (∇h,∇h)

− 2
F 3∇iF∇jF −

2

F
(h2)ij + r∇ihlj < ∇lX,X > +rhij .

Proof. It follows from previous corollary, (3.18) and (3.21). �

4.1. Monotonicity properties. We want to choose F and r in flow (4.2) such that the
corresponding global geometric quantities are monotone along the flow. The Minkowski
identity (1.4) plays key role here.

From identities in Corollary 4.3, for 1 ≤ l ≤ n− 1,

(4.7)

∂t

∫
M
σldµg =

∫
M
∂tσl + σl

1

2
gij∂tgijdµg

= −
∫
M

(
1

F
− ru)

(∑
i

σl−1;iλ
2
i − σlσ1

)
dµg

= (l + 1)

∫
M

(
1

F
− ru)σl+1dµg

= (l + 1)

[ ∫
M

1

F
σl+1dµg − r

∫
M
uσl+1dµg

]
= (l + 1)

[ ∫
M

1

F
σl+1dµg − rCn,l

∫
M
σldµg

]
,

where Cn,l =
σl+1(I)
σl(I)

is the constant in the Minkowski equality.
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For the special case l = n and for any f , by Proposition 4.2, along flow (4.3),

(4.8)

∂t

∫
M
σndµg =

∫
M
∂tσn + σn

1

2
gij∂tgijdµg

= −
∫
M
f
(∑

i

σn−1;iλ
2
i − σnσ1

)
dµg

= (l + 1)

∫
M
f
(
σnσ1 − σnσ1

)
dµg

= 0

That is, V0(Ω) is a topological invariant. This gives topological obstruction for the problem
of prescribing curvature measure C0.

From (4.7), if one wants to fix
∫
M σkdµg, one may choose F = σk

σk−1
in equation (4.2)

and define r as

(4.9) r(t) =

∫
Mt

σk+1σk−1

σk
dµg

Cn,k
∫
M σkdµg

.

To be precise, we consider the normalized flow

(4.10) ∂tX =

(
σk−1

σk
− ru

)
ν,

The first step is to get an estimate on r(t).

Lemma 4.5. r(t) is invariant under rescaling, and

(4.11) r(t) ≤ (
σk−1

σk
)(I) = Cn,k−1,

equality holds if and only if Mt is the standard sphere.

Proof. The inequality follows directly from the Newton-MacLaurin inequality. If the equal-
ity holds, this means the Newton-MacLaurin inequality holds at every point of Mt. So Mt

is umbilical at every point, it is a sphere. �

.
The following monotonicity property is crucial.

Proposition 4.6. For any k-convex domain Ω, under flow equation (4.10), we have

(1)

∫
M
σkdµg is a constant;

(2)

∫
M
σk−1dµg is monotonically non-decreasing.

Proof. By the choice of r and equation (4.7),

(4.12) ∂t

∫
M
σkdµg = 0.

This proves the first part of the statement.
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From equation (4.7),

(4.13)

∂t

∫
M
σk−1dµg = k

[ ∫
M

1

F
σkdµg − rCn,k−1

∫
M
σk−1dµg

]
= k

∫
M

[
1

F

σk
σk−1

− rCn,k−1

]
σk−1dµg

= k

∫
M

[
1−

∫
M

σk+1σk−1

σk
dµg

Cn,k
∫
M σkdµg

Cn,k−1

]
σk−1dµg

≥ k
∫
M

[
1− σk+1(I)σk−1(I)

σ2
k(I)

Cn,k−1

Cn,k

]
σk−1dµg = 0,

where we used the Newton-MacLaurine inequality in the last step. �

We want to establish the following longtime existence and convergence of flow (4.10).

Theorem 4.7. If Ω0 is k-convex starshaped domain with smooth boundary M0, flow (4.10)
exists all time t > 0, it converges to a standard sphere centered at the origin.

By a proper rescaling, we will assume Vk(Ω0) = Vk(B) where B is the standard ball in
Rn+1.

The rest of the section is devoted to the proof of Theorem 4.7.

4.2. The Harnack estimate. If Mn is starshaped, it can be parametrized as X = ρ(x)x,
where x ∈ Sn. All the geometric information of the hypersurface except the parametriza-
tion are encoded in the function ρ(x).

Write ρ = |X(t)| = ρ(x(t), t), where X evolves according to

Xt = fν.

ρ satisfies
dρ

dt
= ρt + ρx · xt.

By (3.2),

ν =
ρx−∇ρ√
ρ2 + |∇ρ|2

.

We have,

f
ρx−∇ρ√
ρ2 + |∇ρ|2

= νf = Xt = (ρx)t = (ρt + ρx · xt)x+ ρxt.(4.14)

Note that xt ⊥ x, equalize the tangential components of Sn in (4.14),

xt = − f∇ρ

ρ
√
ρ2 + |∇ρ|2

.
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Therefore,

ρx · xt = ∇ρ · xt = − f |∇ρ|2

ρ
√
ρ2 + |∇ρ|2

.

Put the above identity to (4.14), equalize the normal component of Sn in (4.14),

ρt = −ρx · xt +
fρ√

ρ2 + |∇ρ|2
=
f
√
ρ2 + |∇ρ|2

ρ
.

In particular, if X satisfies equation (4.2), ρ satisfies

(4.15) ∂tρ =

√
ρ2 + |∇ρ|2

ρ

1

F
− rρ.

Equation (4.15) is equivalent to equation (4.2) up to diffeomorphism, if we can prove that
the starshapedness is preserved along the flow.

For the gradient estimate, we prefer to work on equation (4.15). As in the previous
section dealing to the problem of prescribing curvature measure, let γ ≡ ln ρ, and we
choose a local orthonormal frame {ei}ni=1 on Sn.

By the homogeneity of F ,

(4.16) ∂tγ =
ω2

F (B)
− r,

where

ω =

√
1 + |∇γ|2, B = (−γij + δij +

∑
l(γiγlj + γjγil)γl
ω(ω + 1)

−
γiγj

∑
l,m γlγlmγm

ω2(1 + ω)2
),

as defined in (3.7).

Proposition 4.8. Let φ = |∇γ|2
2 , assume (4.16) preserves κ(t) ∈ Γk,

(4.17) ∂tφ = Llj∇l∇jφ+Wk · ∇kφ−
ω2

F 2(B)

∑
ij

∂F

∂bij
(δij |∇γ|2 − γjγi + δijγ

2
ii).

where Wk is a one-parameter family of vector fields depending on time, and Lij is an
elliptic operator defined as follows,

(4.18) Lij ≡ ω2

F 2(B)
F̃ ij ,

where F̃ ij defined as in (3.12). In consequence, ∇γ is bounded from above independent of
time t.

Proof. κ ∈ Γk is equivalent to B ∈ Γk, hence F (B) > 0. Rewrite the last equation in
(4.16) as

F (B) =
ω2

γt + r
.

Proposition follows from Lemma 3.4 with a straightforward computation using identity
(3.13). �
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The following Harnack type gradient estimate is a directly consequence.

Corollary 4.9. Let ρ be a positive solution to (4.15) on Sn × [0, T ). Then there exists a
constant C which depends on ρ(·, 0) but independent of t, such that at each time t ∈ [0, T ),

(4.19) max
Sn

ρ(·, t) ≤ C ·min
Sn

ρ(·, t)

Proof. We prove the corollary for each fixed time t0 ∈ [0, T ). Assume ρ(·, t0) achieves
maximum at x+ and minimum at x−, and let Γ : [s1, s2] −→ Mn be a path joining x−
and x+. We have

(4.20)

log
ρ(x+, t0)

ρ(x−, t0)
=

∫ s2

s1

d

ds
[log ρ(Γ(s), t0)]ds

=

∫ s2

s1

∇ρ
ρ
· dΓ

ds
ds

≤
∫ s2

s1

∇γ ·
∣∣∣∣dΓ

ds

∣∣∣∣ds
≤ C̃

∫ s2

s1

∣∣∣∣dΓ

ds

∣∣∣∣ds.
By taking Γ to be the shortest geodesic with constant speed 1 which joins x− and x+,

we obtain

∫ s2

s1

∣∣∣∣dΓ

ds

∣∣∣∣ds = d(x−, x+) ≤ π. �

Lemma 4.10. Suppose that ρ > 0 satisfies equation (4.15), then at any time t0 ≥ 0, if
x0 ∈ Sn is a minimum point of ρ(x, t0), then ρ(x0, t0)t ≥ 0, strict inequality holds unless
M(t0) is a round unit sphere at the origin.

Proof. The minimum point of ρ(x, t0) is the same as minimum point of γ(x, t0). By
equation (4.16),

γt(x0, t0) =
ω2(x0, t0)

F (B(x0, t0))
− r(t0).

As x0 is a minimum point, ∇γ(x0, t0) = 0, so at (x0, t0), ω = 1 and

(4.21) B = (−∇2
γ + I) ≤ I.

Hence,

(4.22) F (B(x0, t0)) ≤ F (I).

That is,

(4.23)
ω2(x0, t0)

F (B(x0, t0))
≥ 1

F (I)
.
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By Lemma 4.5, r(t0) <
1

F (I)
unless unless M(t0) is a round sphere (by normalization, it

is a sphere of radius 1). We have

γt(x0, t0) =
ω2(x0, t0)

F (B(x0, t0))
− r(t0) ≥ 1

F (I)
− r(t0) > 0,

unless unless M(t0) is a round sphere of radius 1. We claim if γt(x0, t0) = 0, this round
sphere must centered at the origin. Suppose its center z is not the origin, we may assume
z = (0, · · · , 0, s) for some −1 < s < 0. Now

γ(x, t0) =
1

2
log(1 + s2 + 2sxn+1).

The minimum point is x0 = (0, · · · , 0, 1), it is easy to compute that

−∇2
γ(x0, t0) =

s

(1 + s)2
I.

The strictly inequalities will occur in (4.21) - (4.23). Thus,

γt(x0, t0) =
ω2(x0, t0)

F (B(x0, t0))
− r(t0) >

1

F (I)
− r(t0) = 0.

contradiction. �

The following C0 estimate is a direct consequence of Corollary 4.9 and Lemma 4.10.

Corollary 4.11. Let ρ be a positive solution to (4.15) on Sn × [0, T ). Then there exists
a uniform positive constant C which does not depend on time t, such that for ∀t ∈ [0, T ),

(4.24) 0 < 1
C ≤ ρ(x, t) ≤ C,

for any point (x, t) ∈ Sn × [0, T ). Moreover, u(x, t) ≥ c > 0 for some constant c indepen-
dent of t.

Proof. By Lemma 4.10, ρ(x0, t0)t > 0 at any minimum point x0 of ρ(x, t0), unless M(t0)
is a round unit sphere centered at 0. That is, minx∈Sn ρ(x, t) is strictly increasing at t0
unless M(t0) is a round sphere centered at 0. In any case,

(4.25) min
x∈Sn

ρ(x, t) ≥ min
x∈Sn

ρ(x, 0).

An upper bound of ρ follows from the Harnack inequality (4.19).
The last statement in lemma follow from the identity

u =
ρ2√

ρ2 + |∇ρ|2
.

�

Since u is bound from below by a positive constant independent of t, flow (4.15) preserves
the starshapedness. We want to show that Γk is also preserved along the flow. From the
property of Γk, we only need to show σk > 0 is preserved. This is equivalent to show
F > 0 is preseved.
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Proposition 4.12. There is C > 0, such that 1
F ≤ C.

Proof. We consider function G = γt + r. We may rewrite equation (4.16) as

(4.26) G =
ω2

F (B)
=: F (∇γ,∇2

γ),

where (F
ij

) = ( ∂F∂γij ) > 0. Differentiate equation (4.26) in t variable, and notice that r is

independent of x,

Gt =
∑
ij

F
ij

(γt)ij +
∑
l

∂F

∂γl
(γt)l

=
∑
ij

F
ij
Gij +

∑
l

∂F

∂γl
Gl.

G is bounded from above by the maximum principle. Since r is bounded, 1
F (B) is bounded.

The boundedness of 1
F follows from C0 and C1 estimates. �

4.3. C2 estimates. Denote ϕ ≡ 1

u
, ϕ satisfies the following evolution equation.

Proposition 4.13. Let ρ be a positive solution to (4.15) on Sn × [0, T ). We have
(4.27)

∂tϕ =
1

F 2
Ḟ ij∇i∇jϕ−

ϕ

F 2
Ḟ (h2)− 2

F 2ϕ
Ḟ (∇ϕ,∇ϕ) + rϕ+ rϕ−1∇lϕ < X,∇lX > .

Proof. We first write down the evolution equation of u using (4.2), (4.5) and (3.21). We
work on local orthnormal frames on M(t).

ut = 〈Xt, ν〉+ 〈X, νt〉

=
1

F
− ru−

∑
l

〈X,Xl〉(
1

F
− ru)l

=
1

F
− ru+

∑
l

〈X,Xl〉(
F ijhij,l
F 2

+ rul)

=
1

F
− ru+

F ij(uij − hij + (h2)iju)

F 2
+ r

∑
l

〈X,Xl〉ul

=
1

F
− ru+

F ijuij
F 2

− 1

F
+
F ij(h2)iju

F 2
+ r

∑
l

〈X,Xl〉ul

Proposition follows from above identity by inserting u = 1
ϕ . �
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Proposition 4.14. Let ρ be a positive solution to (4.15) on Sn × [0, T ). We have

(4.28)

∂t(ϕh
i
j) =

1

F 2
Ḟ kl∇k∇l(ϕhij))−

2ϕ

F 3
∇iF∇jF +

ϕ

F 2
F̈ kl,mn∇ihkl∇jhmn

− 2
F 2ϕ

Ḟ kl∇kϕ∇l(ϕhij) + r∇l(ϕhij) < ∇lX,X >

−2ϕ

[
(h2)ij
F − rhij

]
.

Proof. Proof follows from Proposition 4.6 and Proposition 4.13. �

Proposition 4.15. Let ρ be a positive solution to (4.15) on Sn × [0, T ) and let κ̃(t) =
max
x∈Mn

t

(κ1(x), · · · , κn(x)). Then for t > 0,

(4.29) max
Mn
t

ϕκ̃(t) ≤ max
Mn

0

ϕκ̃(0),

with the equality holds if and only if M0 is a sphere centered at the origin. Since σ1(κ) > 0,
we have uniform curvature bounds.

Proof. Let x0 be a point such that h1
1(x0, t0) = κ(t0) for some direction e1. By (4.28), and

concavity of F ,

(ϕh1
1(x0, t0))t ≤ −2ϕ

[
(h1

1)2

F (κ)
− rh1

1

]
.

At x0, h1
1 = κ̃(t) ≥ κi for all i. By the monotonicity, homogeneity of F and By Lemma

4.5,

(4.30)
h1

1

F (κ)
≥ 1

F (I)
≥ r.

We obtained at x0, (ϕh1
1(x0, t0))t ≤ 0.

We claim for any t0, (ϕh1
1(x0, t))t > 0 unless M(t0) is the unit sphere centered at 0.

Now suppose (ϕh1
1(x0, t))t = 0, all inequalities in (4.30) must be equalities. In particular,

r(t) =
1

F (I)
.

By Lemma 4.5 and normalization, M(t0) must be a sphere of radius 1. So κ1(x, t0) =
· · · , κn(x, t0) = 1,∀x ∈ Sn and we may use the standard spherical paramerization for
M(t0). Suppose its center is z 6= 0, we may assume z = (0, · · · , 0, s) for some −1 < s < 0.
Now

u(x, t0) = 1 + sxn+1, ϕ(x, t0) =
1

1 + sxn+1
.

The minimum point is x0 = (0, · · · , 0, 1), it follows from (4.28),

∂t(ϕh
i
j) =

1

F 2
Ḟ kl∇k∇l(ϕhij)− 2ϕ

[
(h2)ij
F
− rhij

]
=

1

F 2
Ḟ kl∇k∇lϕ < 0,

contradiction. �

We now prove Theorem 4.7.
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Proof. By C2 estimates and Proposition 4.12, κ ∈ Γk is preserved along flow (4.15). By
Lemma 2.7, the equation is uniform parabolic. We may apply the Krylov Theorem [32]
and the standard parabolic theory to conclude the longtime existence and regularity for
the flow. To get exponential convergence, we use the uniform ellipticity of F . There is
c0 > 0 independent of t,

(
∂F (B)

∂bij
)(x, t) ≥ c0I, ∀(x, t).

Thus, as n ≥ 2, ∑
i

∂F (B)

∂bii
≥ c0 + λM (

∂F (B)

∂bij
),

where λM (W ) denoting the largest eigenvalue of W . By C2 estimates, there is β > 0
independent of t such that

ω2

F 2

∑
ij

∂F (B)

∂bij
(δij |∇γ|2 − γiγj) ≥ β|∇γ|2.

By Proposition 4.8,

(4.31) ∂t
( |∇γ|2

2

)
≤ Llj∇l∇j

( |∇γ|2
2

)
+Wk · ∇k

( |∇γ|2
2

)
− β|∇γ|2.

Set Q = eβt
|∇γ|2

2
, Q satisfies differential inequality

(4.32) ∂tQ ≤ Llj∇l∇jQ+Wk · ∇kQ.

Therefore, Q is bounded from above independent of t. From there, we conclude |∇γ|2 → 0
exponentially as t → ∞. By our normalization, ρ → 1 and ∇ρ → 0 exponentially as
t→∞.

For the exponential convergence of ∇mρ, apply integration by parts,∫
Sn
|∇mρ|2dµSn ≤ C(

∫
Sn
|∇m+1

ρ|2dµSn)
1
2 (

∫
Sn
|∇m−1

ρ|2dµSn)
1
2 .

By the a priori estimates, ‖∇m+1
ρ‖L∞(Sn) ≤ cm for some cm independent of t. An induc-

tion argument yields that, for each m ∈ N+, there is Cm > 0, βm > 0, such that

‖∇mρ‖L2(Sn) ≤ Cme−βmt.

The Sobolev Lemma implies ∇mρ→ 0 exponentially and t→∞, for each m ∈ N+. �

We prove Theorem 4.1. In fact, the following is true.

Theorem 4.16. Suppose Ω is a C2 starshaped domain in Rn+1. Assume 1 ≤ k ≤ n− 1,
that

κ(x) ∈ Γk = {λ ∈ Rn|σl(λ) ≥ 0,∀l = 1, · · · , k.},
then the following inequality holds,

(4.33) (V(n+1)−k(Ω))
1

n+1−k ≤ Cn,k(Vn−k(Ω))
1

n−k ,
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where

Cn,k =
(V(n+1)−k(B))

1
n+1−k

(Vn−k(B))
1

n−k
,

B is the standard ball in Rn+1. The equality holds if and only if Ω is a ball.

Proof. Case 1. Ω is k-convex.
Inequality (4.33) follows directly from the above Proposition 4.6 and Theorem 4.7. We

examine the equality case. Recall (4.13),

(4.34)
∂t

∫
M
σk−1(κ)dµg = k

∫
M

[
1−

∫
M

σk+1(κ)σk−1(κ)
σk(κ) dµg

Cn,k
∫
M σk(κ)dµg

Cn,k−1

]
σk−1dµg

≥ k
∫
M

[
1− σk+1(I)σk−1(I)

σ2
k(I)

Cn,k−1

Cn,k

]
σk−1dµg = 0.

At any time t0 ≥ 0, inequality is strict in (4.34) unless

σk+1(κ)σk−1(κ)

σk+1(I)σk−1(I)σk(κ)
=
σk(κ)

σ2
k(I)

, a.e. in M(t0).

That is the equality is the case in (2.8), this implies M(t0) is umbilical almost everywhere.
As M(t0) is C2, it is umbilical everywhere. M(t0) is a round sphere for each t ≥ t0. In
particular, if equality is held in (4.33), then M is a sphere.
Case 2. General case.

We may approximate Ω by k-convex starshaped domains. The inequality follows from
the approximation. We now treat the equality case. We first note that both

∫
M σkdµg

and
∫
M σk−1dµg are positive, since there exists at least one elliptic point on an embedded

compact hypersurface in Euclidean space and also the k-convexity condition. Suppose Ω
is a weakly k-convex starshaped domain with equality in (4.33) attained. Let M+ = {x ∈
M |σk(κ(x)) > 0}. M+ is open and nonempty since M is compact and embedded in Rn+1.
We claim that M+ is closed. This would imply M = M+, so Ω is k-convex, by Case 1, we
may conclude Ω is a standard ball.

We now prove that M+ is closed. Pick any η ∈ C2
0 (M+) compactly supported in M+.

Let Ms be the hypersurface determined by position function Xs = X + sην, where X is
the support function of M and ν is the unit outernormal of M at X. Let Ωs be the domain
enclosed by Ms. It is easy to show Ms is k-convex starshaped when s is small enough.
Define

(4.35) Ik(Ω) =
V

1
n+1−k

(n+1)−k(Ω)

V
1

n−k
n−k (Ω)

.

Therefore Ik(Ωs)− Ik(Ω) ≤ 0 for s small, i.e.

d

ds
Ik(Ωs)|s=0 = 0.
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Simple calculation yields

d

ds

∫
Ms

σl(κs)dµgs |s=0 = (l + 1)

∫
M
σl+1(κ)ηdµg.

Therefore,
d

ds
Ik(Ωs)|s=0 = A

∫
M

(σk+1(κ)− c1σk(κ))ηdµg = 0,

for some constant A > 0 with c1 = k(n−k)
(k+1)(n−k+1)

1

I(B)n−k+1(
∫
M σk)

1
n−k

> 0 and for all η ∈

C2
0 (M+). Thus,

(4.36) σk+1(κ(x)) = c1σk(κ(x)), ∀x ∈M+.

It follows from the Newton-MacLaurine inequality, there is a dimensional constant C̃k,n
such that

σk+1(κ(x)) ≤ C̃k,nσ
1+1/k
k (κ(x)), ∀x ∈M+.

In view of (4.36), there is a positive constant c2, such that

(4.37) σk(κ(x)) ≥ c2 > 0, ∀x ∈M+,

where c2 = ( c1
C̃k,n

)k is a positive constant depending only on n, k, and Ω. (4.37) implies

M+ is closed. �

5. Appendix

We present Garding’s theory of hyperbolic polynomials here.

Definition 5.1. Let P be a homogeneous polynomial of degree m in a finite vector space
V . For θ ∈ V , P is called hyperbolic at θ if P (θ) 6= 0 and the equation P (x + tθ) = 0
(as a polynomial of t ∈ C) has only real roots for every x ∈ V . We say P is complete if
P (x+ ty) = P (x) for all x, t implies y = 0.

Proposition 5.2. Suppose P is hyperbolic at θ, then the component Γ of θ in {x ∈
V ;P (x) 6= 0} is a convex cone, the zeros of P (x + ty) as a polynomial in t are real

∀x, y ∈ V . The polynomial P (x)
P (θ) is real, and it is positive when x ∈ Γ. Furthermore,

(P (x)
P (θ) )

1
m is concave and homogeneous of degree 1 in Γ, equal to 0 on the boundary of Γ.

Proof. We normalize P (θ) = 1, then there exist tj ∈ R, j = 1, · · · ,m, such that

P (x+ tθ) = (t− t1)× ...× (t− tm).

In particular, P (x) = (−t1)× ...× (−tm) ∈ R. Set

Γθ = {x ∈ V ;P (x+ tθ) 6= 0, t ≥ 0}.
Γθ is open and θ ∈ Γθ as P (θ + tθ) = (1 + t)mP (θ) only has the zero t = −1. Notice that
Γθ is also closed in {x ∈ V ;P (x) 6= 0}. If x ∈ Γ̄θ, then P (x+ tθ) 6= 0, when t > 0. Hence,

Γθ = {x ∈ Γ̄θ, P (x) 6= 0}.
If x ∈ Γθ, then x + tθ ∈ Γθ when t > 0. This implies that Γθ is connected, Therefore
λx+µθ ∈ Γθ for all λ > 0, µ > 0. That is, Γθ is star-shaped with respect to θ and Γθ = Γ.
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For y ∈ Γ and δ > 0 fixed,

Ey,δ = {x ∈ V ;P (x+ iδθ + isy) 6= 0, Re(s) ≥ 0}

is open. If s 6= 0, P (iδ+ isy) = (is)mP ( δθs + y) = 0, the hyperbolicity implies s < 0. That

is, 0 ∈ Ey,δ. If x ∈ Ēy,δ and Res > 0, then Hurwitz’ theorem implies P (x+ iδθ+ isy) 6= 0.
This is still true when Re(s) = 0 since x + isy is real. Therefore, Ey,δ is both open and
closed, and Ey,δ = V . Thus,

P (x+ i(δθ + y)) 6= 0, ∀x ∈ Rn, y ∈ Γ, δ > 0.

For Γ is open, the above remains true for δ = 0. Equation P (x + ty) = 0 has only real
roots, for if t = t1 + it2 is a root with t2 6= 0 we would get P (x+t1y

t2
+ iy) = 0. This

means that y can play the role of θ, Γ is star-shaped with respect to every point in Γ. The
convexity of Γ follows. We also have P (y) > 0 for all y ∈ Γ.

We now prove the concavity statement in the proposition. As P (x + ty) has only real
roots for y ∈ Γ, there are tj ∈ R, j = 1, ...,m,

P (x+ ty) = P (y)(t− t1)× ...× (t− tm).

In turn,

P (sx+ y) = P (y)(1− st1)× ...(1− stm).

If sx+ y ∈ Γ, we must have 1− stj > 0 for every j. If f(s) = logP (sx+ y), then

f
′
(s) = −

∑ tj
1− stj

, f”(s) = −
∑ t2j

(1− stj)2
.

Therefore, by Cauchy-Schwarz inequality,

m2e−
f(s)
m
d2(e

f(s)
m )

ds2
= f

′
(s)2 +mf”(s)

= (
∑ tj

1− stj
)2 −m

∑ t2j
(1− stj)2

≤ 0.

�

If P is a homogeneous polynomial of degree m. For xl = (xl1, ..., x
l
n) ∈ V , l = 1, ...,m,

we denote < xl, ∂∂x >=
∑n

1 x
l
j
∂
∂xj

as a vector field. We define the complete polarization of

P as

P̃ (x1, ..., xm) =
1

m!
< x1,

∂

∂x
> ... < xm,

∂

∂x
> P (x).

It is a multilinear and symmetric in x1, ..., xm ∈ V , independent of x, and that

P̃ (x, ..., x) =
1

m!

dm

dtm
P (tx) = P (x),∀x ∈ V.

And

P (t1x
1 + ...+ tmx

m) = m!t1...tmP̃ (x1, ..., xm) + ...

where the dots denote terms not containing all the factors tj .
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Lemma 5.3. If P is hyperbolic at θ and m > 1, then for any y = (y1, ..., yn) ∈ Γ,

Q(x) =
n∑
1

yj
∂

∂xj
P (x)

is also hyperbolic at θ. In general, if x1, ..., xl ∈ Γ for some l < m, then

Q̃l(x) = P̃ (x1, ..., xl, x, ..., x)

is hyperbolic at θ.

The proof is immediate by Rolle’s theorem. Using polarization and Lemma 5.3, we list
some of important examples of hyperbolic polynomials.

Corollary 5.4. The following polynomials are hyperbolic.

(1) The polynomial P = (x1)2 − (x2)2 − ...− (xn)2 is hyperbolic at (1, 0, ..., 0).
(2) The polynomial P = x1...xn is complete hyperbolic at any θ with P (θ) 6= 0. The

positive cone Γ of P at (1, ..., 1) is

Γ = {x = (x1, ..., xn);xj > 0, ∀j}.
(3) In general the elementary symmetric function σk(x) is complete hyperbolic at

(1, ..., 1), the corresponding positive cone Γk is

Γk = {σl(x) > 0,∀l ≤ k}.
(4) Let S denote set of all real n × n symmetric matrices. Then σk(W ),W ∈ S is

complete hyperbolic at the identity matrix, the corresponding positive cone is

Γk = {σl(W ) > 0, ∀l ≤ k}.
(5) For W 1, ...,W l ∈ Γk, l < k, then Ql(W ) = P̃ (W 1, ...,W l,W, ...,W ) is complete

hyperbolic in Γk.

Lemma 5.5. Suppose P is a second order complete hyperbolic polynomial. Suppose both
roots of f(s) = P (sy + w) vanishing for some y ∈ Γ and w ∈ V . Then, all the roots of
g(s) = P (sz + w) are vanishing for any z ∈ Γ.

Proof. Since P (y + tw) = P (y) 6= 0 for all t, we must have y + tw ∈ Γ. By the convexity
of Γ, we have z + tw ∈ Γ for all t. So, P (z + tw) 6= 0. For any z ∈ Γ and all t,

P (z)(1 + tλ1)(1 + tλ2) = P (z + tw) 6= 0,

λ1, λ2 are the roots of P (sz + w). Since t is arbitrary, this gives λ1 = λ2 = 0. �

Lemma 2.4 is a special case of the following proposition.

Proposition 5.6. Suppose P a homogenous polynomial of degree m, suppose it is hyper-
bolic at θ and P (θ) > 0, then ∀x1, ..., xm ∈ Γ,

P 2(x1, x2, x3, · · · , xm) ≥ P (x1, x1, x3, · · · , xm)P (x2, x2, x3, · · · , xm)

P (x1, ..., xm) ≥ P (x1)
1
m ...P (xm)

1
m .(5.1)

If P is complete, the equality holds if and only if all xj are pairwise proportional. This

is also equivalent that for x, y ∈ Γ not proportional, the function h(t) = P (x + ty)
1
m is
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strictly concave in t > 0. If P is complete, then Q̃l(X) = P̃ (x1, ..., xl, x, ..., x) is complete

if m− l ≥ 2 and x1, ..., xl ∈ Γ. In particular, P̃ (x1, ..., xm) > 0 if x1 ∈ Γ̄ and xj ∈ Γ when
m ≥ 2.

Proof. Since P
1
m (X) is concave in Γ, it follows that for any x, y ∈ Γ, h(t) = P (x + ty)

1
m

is concave in t > 0. So, h”(t) ≤ 0. A direct computation yields

h”(0) = (m− 1)(P̃ (y, y, x, ..., x)P (X)− P̃ (y, x, ..., x)2)P (x)
1
m
−2.

We get the inequality

P̃ (y, y, x, ..., x)P (X) ≤ P̃ (y, x, ..., x)2.

In turn, it implies

P̃ (y, x, ..., x)m ≥ P (y)P (x)m−1.

We now apply induction argument. Take y = x1 and assuming that (5.1) is already proved

for hyperbolic polynomials of degree m− 1. Let Q(x) = P̃ (y, x, ..., x), we get

P̃ (x1, ..., xm) ≥ (Q(x2)...Q(xm))
1

(m−1)

≥ (P (x1)P (x2)m−1...P (x1)P (xm)m−1)
1

m(m−1) ,

which proves (5.1).
To prove the last statement in the proposition, it suffices to show that if m ≥ 3,

Q (defined above) is complete. suppose Q(x) = Q(x + tz) for all x, t. In particular,
Q(y + tz) = Q(y). That means that Q(ty + z) = Q(ty), so P (ty + z) − P (ty) = a is
independent of t. Since the zeros of P (ty) + a = tmP (y) + a must all be real, it follows
that a = 0. This P (y + sz) = P (y) 6= 0 for all s, so it follows that y + sz ∈ Γ. Hence,

(sx+ y + sz)

(s+ 1)
∈ Γ, ∀x ∈ Γ, s > 0.

Letting s → ∞, we conclude that x + z ∈ Γ̄ for all x ∈ Γ. This implies x + z ∈ Γ. We
can replace z by tz for any t, so x + tz ∈ Γ for all t and x ∈ Γ. Thus P (z + sx) can not
have any zeros 6= 0, so P (z + sx) = smP (x). That is P (x + tz) = P (x) for all t and all
x ∈ Γ. Since P is analytic, that means P (x + tz) = P (x) for all t and all x ∈ V . By the
completeness assumption on P , z = 0.

Finally, we discuss the equality case in (5.1). By the above, we may assume m = 2.

If the equality holds, we have P (y)P (x) = P̃ (y, x)2. This implies the roots of the second
order polynomial p(t) = P (x+ ty) are equal, i.e., t1 = t2 = −λ 6= 0. In turn, for all t,

P (y + (t+ λ)−1(x− λy)) = (t+ λ)−2P (ty + x) = P (y).

That is both roots of the polynomial f(s) = P (sy + (x− λy)) are vanishing.
From Lemma 5.5, we have P (z + t(x − λy)) = P (z) for all z ∈ Γ and all t. Since Γ is

open and P is analytic, P (z + t(x− λy)) = P (z) for all z and all t. By the completeness
of P , x− λy = 0. That is, x and y are proportional. �
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6. Notes

1. The definition of curvature measures in this notes follows from Federer [12], where he
used Steiner’s formula to define them for sets of positive reach. Alexandrov [3] initiated the
problem of prescribing curvature measure C0, which he called the integral curvature. The
problem of prescribing 0-th curvature measure is often referred as the Alexandrov problem
in literature. It was Alexandrov who formulated the problem through radial parametriza-
tion. The existence and uniqueness of solutions were obtained by A.D. Alexandrov [3].
It can be deduced to a Monge-Ampére type equation on Sn. For n = 2 the regularity
of solutions of the Alexandrov problem in the elliptic case was proved by Pogorelov [39]
and for higher dimensional cases, it was solved by Oliker [37]. The general regularity
results (degenerate case) of the problem were obtained in [22]. The problem of prescribing
general k-th curvature measures was settled for starshaped hypersurfaces recently in [20],
though C0 and C1 estimates were obtained in [21] some time ago. The proof of Lemma
3.4 presented here is due to Junfang Li [33], which can apply to more general curvature
equations. Another proof of gradient estimate for equation (3.3) appeared in [23], there
the question of when solution to equation (3.3) is discussed.

2. The presentation of theory of hyperbolic polynomials in Appendix basically follows
the original paper of Garding [14]. Caffarelli-Nirenberg-Spruck [5] developed the study of
k-Hessian equation in the category of Γk, followed by [6] for k-curvature equation. The
proof of Lemma 2.7 is from [31], which in turn is inspired by [34]. Lemma 2.8 was proved
in [20]. Using κ

u in C2 estimates for k-curvature equation on star-shaped hypersurfaces
was introduced in [6]. The complication for (3.3) is that the right hand side depends on

∇ρ, the standard concavity of σ
1
k
k is not sufficient in this case. C2 estimate is still open

for k-curvature equation on star-shaped k-convex hypersurfaces with general right hand
side

σk(κ) = f(∇ρ(x), ρ(x), x), x ∈ Sn.

In a recent work [26] established C2 estimates for admissible solutions of above equation
in the case k = 2 and for convex solutions for general k.

3. The classical isoperimetric inequalities for quermassintegrals of convex bodies are the
consequence of the Alexandrov-Fenchel inequality [1, 2] in convex geometry. Trudinger
considered such inequalities for k-convex domains in [42]. Theorem 4.1 was proved in [17].
The proof in [17] used un-normalized inverse mean curvature type flow for starshaped
hypersurfaces studied by Gerhardt [15] and Urbas [43], where they established longtime
existence and exponential convergence for a class of more general type of inverse mean
curvature flow. In section 3, we use normalized flow (4.10), which was initially devised in
[19] when they did not realize that the work of [15, 43] would imply the monotonicity of
the isoperimetric ratio Ik in (4.35). Flow (4.10) considered here has an advantage that one
can see how to design a flow to fit the monotonicity. Similar design was used previously in
conformal geometry in [27, 28]. Junfang Li pointed out that, one may also pick r(t) ≡ 1

F (I)

in (4.10), as in a recent paper [18]. With this choice of r, the proof of C0 estimates for
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flow (4.10) can be simplified. The monotonicity in Proposition 4.6 is reversed as∫
M
σkdµg is monotonically non-increasing;

∫
M
σk−1dµg is a constant.

It is an open question if (4.1) is valid without the starshapedness condition. In the case
k = 1, Huisken [30] verified the inequality replacing the star shapedness by the assumption
that ∂Ω is outward-minimizing. Again, in the case k = 1, (4.1) was proved for general 1-
convex domains in [7] for some constant c which is a not sharp. Under additional condition
that Ω is k + 1-convex (without starshapedness assumption), inequality (4.1) is proved in
[8] with some no-sharp constant c.

4. The normalized inverse mean curvature flow

(6.1) Xt = (
1

H
− u

n
)ν

preserves the surface area and increases the enclosed volume. This implies the isoperi-
metric inequality for mean convex star-shaped domain. The statement can be checked as
below.

(6.2)

d
dt

∫
M
dµg =

∫
M

(
1

H
− u

n
)Hdµ

= 1
n

∫
M

(n− uH)dµ

= 0.

The evolution of the volume V (t) is

(6.3)

d
dtV =

∫
M

(
1

H
− u

n
)dµ

=

∫
M

1

H
dµ− n+ 1

n
V

≥ 0.

where the last inequality comes from an inequality proved by Ros in [41], see formula (5)
on page 449.

5. The prescribing measure problem is a counter part of the Christoffel-Minkowski prob-
lem, which is the problem of prescribing area measures for convex bodies. The Minkowski
problem was considered by Minkowski in [35] in 1897. The differential geometric setting
of the problem was solved in early 1950s by Nirenberg [36] and Pogorelov [38] for n = 2.
The solution of the Minkowski problem in higher dimension came much later in 1970s by
Cheng-Yau [9] and Pogorelov [40]. The Minkowski problem is a special case (k = n) of the
problem of prescribing general k-th (1 ≤ k ≤ n) area measures in convex geometry. At the
other end (k = 1), it is the Christoffel problem. This case has been settled completely by
Firey [13]. In general, the problem of prescribing k-th is termed the Christoffel-Minkowski
problem. It is equivalent to solve the following equation

(6.4) σk(uij + uδij) = ϕ on Sn,
with convexity requirement (uij + uδij) > 0.
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The intermediate Christoffel-Minkowski problem (1 < k < n) is still open, except for
some special cases. There are also some sufficient conditions, we refer to [40] and [24].
The necessary and sufficient condition for the existence of admissible solutions of equation
(6.4) is known (e.g., [25]). The main difficulty lies in the question of convexity for the
admissible solutions (which in general are not convex) of equation (6.4).

6. The Minkowski problem can also be considered as a problem of prescribing the Gauss
curvature on outernormals of convex hypersurfaces. The similar question was raised for
other Weingarten curvature functions σk(κ1, · · · , κn) for fixed 1 ≤ k ≤ n in [4] and [10].
The corresponding equation is

(6.5)
σn
σn−k

(uij + uδij) = f on Sn.

When 1 ≤ k < n, very little is known for this problem. No uniqueness result is known
except the case n = 2 (e.g., see [4]). If the prescribed curvature function is invariant under
an automorphic group G without fixed points, the problem is solvable [16].

Acknowledgement: Large part of the material in this lecture notes are based on joint
works with Junfang Li [17, 20]. I would like to thank him for many helpful discussions
and valuable comments regarding the exposition of the notes.
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